

Lecture Notes in Computer Science 3465
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marco Bernardo Alessandro Bogliolo (Eds.)

Formal Methods
for Mobile Computing

5th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems
SFM-Moby 2005
Bertinoro, Italy, April 26-30, 2005
Advanced Lectures

13

Volume Editors

Marco Bernardo
Alessandro Bogliolo
Università degli Studi di Urbino "Carlo Bo"
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: {bernardo, bogliolo}@sti.uniurb.it

Library of Congress Control Number: 2005924063

CR Subject Classification (1998): D.2, D.3, F.3, C.3, C.2.4

ISSN 0302-9743
ISBN-10 3-540-25697-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25697-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11419822 06/3142 5 4 3 2 1 0

Preface

This volume collects a set of papers accompanying the lectures of the fifth edition
of the International School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2005 (Moby) was devoted to formal methods and tools for the design
of mobile systems and mobile communication infrastructures. This volume is
organized into four parts related to mobile computing, which cover models and
languages, scalability and performance, dynamic power management, and mid-
dleware support. Each part is composed of two papers.

The opening paper by Montanari and Pistore gives an overview of history-
dependent automata, an extension of ordinary automata that overcomes their
limitations in dealing with named calculi. In particular, the authors show that
history-dependent automata allow for a compact representation of π-calculus
processes, which is suitable both for theoretical investigations and for the ver-
ification of models of agents and code mobility. Bettini and De Nicola’s pa-
per presents X-Klaim, an experimental programming language specifically de-
signed to develop distributed systems composed of several components interact-
ing through multiple distributed tuple spaces and mobile code. Through a series
of examples, the authors show that many mobile code programming paradigms
can be naturally implemented by means of the considered language, which com-
bines explicit localities as first-class data with coordination primitives.

Gerla, Chen, Lee, Zhou, Chen, Yang and Das provide an introduction to
MANET, a mobile ad hoc wireless network established for a special, often ex-
temporaneous service customized to applications. After emphasizing the self-
configurability, mobility and scalability attributes of MANET, the authors con-
centrate on mobility and show its impact on protocols and operations. Grassi
presents an overview of the performance issues raised by the high variability and
heterogeneity of mobile systems, together with some approaches to the careful
planning of the performance validation of such systems. The author then focuses
on the definition of model-based transformations from design-oriented models to
analysis-oriented models that comprise non-functional attributes.

Acquaviva, Aldini, Bernardo, Bogliolo, Bontà and Lattanzi illustrate in their
paper a methodology for predicting the impact on the overall system functionality
and efficiency of the introduction of a dynamic power management policy within
a battery-powered mobile device. The predictive methodology relies on a com-

VI Preface

bination of formal description techniques, noninterference analysis, and perfor-
mance evaluation to properly tune the dynamic power manager operation rates.
The methodology is then used by Acquaviva, Bontà and Lattanzi in the frame-
work of the IEEE 802.11 standard, in order to provide a power-accurate model of
a wireless network interface card that allows the energy/performance trade-off to
be studied as a function of traffic patterns imposed by the applications.

Lattanzi, Acquaviva and Bogliolo address the limited storage memory of wire-
less mobile terminals through the concept of network virtual memory. The au-
thors first compare the performance and energy of network swapping with those
of local swapping on microdrives and flash memories, then present an infrastruc-
ture providing efficient remote memory access to mobile terminals. The closing
paper, by Corradini and Merelli, reports on Hermes, a middleware system for
the design and the execution of activity-based applications in distributed envi-
ronments. While middleware for mobile computing has typically been developed
to support physical and logical mobility, Hermes provides an integrated envi-
ronment where application-domain experts can focus on designing the activity
workflow.

We believe that this book offers a quite comprehensive view of what has
been done and what is going on worldwide at present in the field of formal
methods for mobile computing. We wish to thank all the lecturers and all the
participants for a lively and fruitful school. We also wish to thank the whole staff
of the University Residential Center of Bertinoro (Italy) for the organizational
and administrative support, as well as the Regione Marche, which sponsored the
school within the CIPE 36/2002 framework.

April 2005 Marco Bernardo and Alessandro Bogliolo
SFM 2005 (Moby) Directors

Table of Contents

Part I: Models and Languages

History-Dependent Automata: An Introduction
Ugo Montanari, Marco Pistore . 1

Mobile Distributed Programming in X-Klaim
Lorenzo Bettini, Rocco De Nicola . 29

Part II: Scalability and Performance

Dealing with Node Mobility in Ad Hoc Wireless Network
Mario Gerla, Ling-Jyh Chen, Yeng-Zhong Lee, Biao Zhou,
Jiwei Chen, Guang Yang, Shirshanka Das . 69

Performance Analysis of Mobile Systems
Vincenzo Grassi . 107

Part III: Dynamic Power Management

A Methodology Based on Formal Methods for Predicting the Impact of
Dynamic Power Management

Andrea Acquaviva, Alessandro Aldini, Marco Bernardo,
Alessandro Bogliolo, Edoardo Bontà, Emanuele Lattanzi 155

Dynamic Power Management Strategies Within the IEEE 802.11
Standard

Andrea Acquaviva, Edoardo Bontà, Emanuele Lattanzi 190

Part IV: Middleware Support

Network Swapping
Emanuele Lattanzi, Andrea Acquaviva, Alessandro Bogliolo 215

Hermes: Agent-Based Middleware for Mobile Computing
Flavio Corradini, Emanuela Merelli . 234

Author Index . 271

History-Dependent Automata:
An Introduction

Ugo Montanari1 and Marco Pistore2

1 University of Trento, Italy
marco.pistore@unitn.it

2 University of Pisa, Italy
ugo@di.unipi.it

Abstract. In this paper we give an overview of History Dependent Automata, an
extension of ordinary automata that overcomes their limitations in dealing with
named calculi. In a named calculus, the observations labelling the transitions of
a system may contain names which represent features such as communication
channels, node identifiers, or the locations of the system. An example of named
calculus is π-calculus, which has the ability of sending channel names as mes-
sages and thus of dynamically reconfiguring process acquaintances and of model-
ing agents and code mobility. We show that History-Dependent Automata allow
for a compact representation of π-calculus processes which is suitable both for
theoretical investigations and for practical purposes such as verification.

1 Introduction

In the context of process calculi (e.g., Milner’s CCS [Mil89]), automata (or labelled
transition systems) are often used as operational models. They allow for a simple rep-
resentation of process behavior, and many concepts and theoretical results for these
process calculi are independent from the particular syntax of the languages and can be
formulated directly on automata. In particular, this is true for the behavioral equiva-
lences and preorders which have been defined for these languages, like bisimulation
equivalence [Mil89, Par80]: in fact they take into account only the labelled actions a
process can perform. Automata are also important from an algorithmic point of view:
efficient and practical techniques and tools for verification [IP96, Mad92] have been de-
veloped for finite-state automata. Finite state verification is successful here, differently
than in ordinary programming, since the control part and the data part of protocols
and hardware components can be often cleanly separated, and the control part is usu-
ally both quite complex and finite state. Particularly interesting is also the possibility to
associate to each automaton — and, consequently, to each process — a minimal realiza-
tion, i.e., a minimal automaton which is equivalent to the original one. This is important
both from a theoretical point of view — equivalent systems give rise to the same (up
to isomorphism) minimal realization — and from a practical point of view — smaller
state spaces can be obtained.

This ideal situation, however, does not apply to all process calculi. In the case of
named calculi, in particular, infinite-state transition systems are generated instead, also

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 1–28, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

2 U. Montanari and M. Pistore

by very simple processes. In a named calculus, the observations labelling the transi-
tions of a system may contain names which are used to identify different features of
the modeled system, such as the communication channels, the agents participating to
the system, or the locations describing the spatial structure of the system. A quite in-
teresting example of named calculus is π-calculus [MPW92, Mil93]. It has the ability
of sending channel names as messages and thus of dynamically reconfiguring process
acquaintances. More importantly, π-calculus names can model objects (in the sense
of object oriented programming [Wal95]) and name sending thus models higher order
communication and mobile code [San93b].

The operational semantics of π-calculus is given via a labelled transition system.
However labelled transition systems are not fully adequate to deal with the peculiar
features of the calculus and complications occur in the creation of new channels. Con-
sider process p = (νy) x̄y.y(z).0. Channel y is initially a local channel for the process
(prefix (νy) is the operator for scope restriction) and no global communication can
occur on it. Action x̄y, however, which corresponds to the output of name y on the
global channel x, makes name y known also outside the process; after the output has
taken place, channel y can be used for further communications, and, in fact, y is used
in y(z).0 as the channel for an input transition: so the communication of a restricted
name creates a new public channel for the process. The creation of this new channel is
represented in the ordinary semantics of the π-calculus by means of an infinite bunch

of transitions of the form p
x̄(w)−→ w(z).0, where w is any name that is not already in use

(i.e., w �= x in our example, since x is the only name in use by p; notice that w = y
is just a particular case). This way to represent the creation of new names has some
disadvantages: first of all, also very simple π-calculus processes, like p, give rise to
infinite-state and infinite-branching transition systems. Moreover, equivalent processes
do not necessarily have the same sets of channel names; so, there are processes q equiv-
alent to p which cannot use y as the name for the newly created channel. Special rules
are needed in the definition of bisimulation to take care of this problem and, as a con-
sequence, standard theories and algorithms do not apply to π-calculus.

The ideal situation of ordinary automata can (at least in part) be recovered also in the
field of named calculi, by introducing a new operational model which is adequate to deal
with these languages, and by extending to this new model (part of) the classical theory
for ordinary automata. As model we propose the history-dependent automata (HD-
automata in brief). As ordinary automata, they are composed of states and of transitions
between states. To deal with the peculiar problems of named calculi, however, states and
transitions are enriched with sets of local names: in particular, each transition can refer
to the names associated to its source state but can also generate new names, which can
then appear in the destination state. In this manner, the names are not global and static,
as in ordinary labelled transition systems, but they are explicitly represented within
states and transitions and can be dynamically created.

This explicit representation of names permits an adequate representation of the be-
havior of named processes. In particular, π-calculus processes can be translated into
HD-automata and a first sign of the adequacy of HD-automata for dealing with π-
calculus is that a large class of finitary π-calculus processes can be represented by finite-
state HD-automata. We also give a general definition of bisimulation for HD-automata.

History-Dependent Automata: An Introduction 3

An important result is that this general bisimulation equates the HD-automata obtained
from two π-calculus processes if and only if the processes are bisimilar according to the
ordinary π-calculus bisimilarity relation. The most interesting result on HD-automata is
that they can be minimized. It is possible to associate to each HD-automaton a minimal
realization, namely a minimal HD-automaton that is bisimilar to the initial one. As in
the case of ordinary automata, this possibility is important from a theoretical but also
from a practical point of view.

In this paper we give an introduction to HD-automata. Some of the basic results on
ordinary automata and an overview of the π-calculus are briefly presented in Section 2.
Section 3 introduces HD-automata, defines bisimulation on HD-automata, and presents
the translation of π-calculus processes to HD-automata. Section 4 describes how HD-
automata can be minimized by taking into account symmetries on the names enriching
states and transitions. Finally, in Section 5 we propose some concluding remarks. Fur-
ther results on HD-automata (as well as the proofs of the results that we present in this
paper) can be found in [MP98b, MP98a, MP99, MP00].

2 Background

2.1 Ordinary Automata

Automata have been defined in a large variety of manners. We choose the following
definition since it is very natural and since, as we will see, it can be easily modified to
define HD-automata.

Definition 1 (ordinary automata). An automaton A is defined by:

– a set L of labels;
– a set Q of states;
– a set T of transitions;
– two functions s, d : T → Q that associate a source and a destination state to each

transition;
– a function o : T → L which associates a label to each transition;
– an initial state q0 ∈ Q.

Given a transition t ∈ T , we write t : q
l−→ q′ if s(t) = q, d(t) = q′ and o(t) = l.

Notation 2. To represent the components of an automaton we will use the name of the
automaton as subscript; so, for instance, QB are the states of automaton B and dB is
its destination function. In the case of automaton Ax, we will simply write Qx and dx

rather than QAx
and dAx

. Moreover, the subscripts are omitted whenever there is no
ambiguity on the referred automaton.
Similar notations are also used for the other structures we define in the paper.

Often labelled transition systems are used as operational models in concurrency.
The difference with respect to automata is that in a labelled transition system no initial
state is specified. An automaton describes the behavior of a single system, and hence the
initial state of the automaton corresponds to the starting point of the system; a labelled

4 U. Montanari and M. Pistore

transition system is used to represent the operational semantics of a whole concurrent
formalism, and hence an initial state cannot be defined.

Various notions of behavioral preorders and equivalences have been defined on au-
tomata. The most important equivalence is bisimulation equivalence [Par80, Mil89].

Definition 3 (bisimulation on automata). Let A1 and A2 be two automata on the
same set L of labels. A relation R ⊆ Q1 ×Q2 is a simulation for A1 and A2 if q1 R q2

implies:

for all transitions t1 : q1
l−→ q′1 of A1 there is some transition t2 : q2

l−→ q′2
of A2 such that q′1 R q′2.

A relation R ⊆ Q1 × Q2 is a bisimulation for A1 and A2 if both R and R−1 are
simulations.
Two automata A1 and A2 on the same set of labels are bisimilar, written A1 ∼ A2, if
there is some bisimulation R for A1 and A2 such that q01 R q02.

An important result in the theory of automata in concurrency is the existence of
minimal representatives in the classes of bisimilar automata. Given an automaton, a re-
duced automaton is obtained by collapsing each class of equivalent states into a single
state (and similarly for the transitions). This reduced automaton is bisimilar to the start-
ing one, and any further collapse of states would lead to a non-bisimilar automaton. The
reduced automaton is hence “minimal”. Moreover, the same minimal automaton (up to
isomorphisms) is obtained from bisimilar automata: thus it can be used as a canonical
representative of the whole class of bisimilar automata.

In the definition below we denote with [q]RA the class of equivalence of state q with
respect to the largest bisimulation equivalence RA on automaton A. With a light abuse
of notation, we denote with [t]RA the class of equivalent of transition t, where

t1 RA t2 iff s(t1) RA s(t2), d(t1) RA d(t2) and o(t1) = o(t2).

Definition 4 (minimal automata). The minimal automaton Amin corresponding to au-
tomaton A is defined as follows:

– Lmin = L;
– Qmin = {[q]RA | q ∈ Q} and Tmin = {[t]RA | t ∈ T};
– smin([t]RA) = [s(t)]RA and dmin([t]RA) = [d(t)]RA ;
– omin([t]RA) = o(t);
– q0min = [q0]RA .

2.2 The π-Calculus

In this section we describe the π-calculus [MPW92, Mil93], a process calculus in which
channel names can be used as values in the communications, i.e., channels are first-
order values. This possibility of communicating names gives to the π-calculus a rich
expressive power: in fact it allows to generate dynamically new channels and to change
the interconnection structure of the processes. The π-calculus has been successfully

History-Dependent Automata: An Introduction 5

used to model object oriented languages [Wal95], and also higher-order communica-
tions can be easily encoded in the π-calculus [San93a], thus allowing for code migra-
tion.

Many versions of π-calculus have appeared in the literature. For simplicity, we con-
sider only the monadic π-calculus, and we concentrate on the ground variant of its
semantics.

Let N be an infinite, denumerable set of names, ranged over by a, b, . . . y, z . . .,
and let Var be a finite set of process identifiers, denoted by A,B, . . .; the π-calculus
(monadic) processes, ranged over by p, q, . . ., are defined by the syntax:

p ::= 0
∣∣∣ π.p

∣∣∣ p|p
∣∣∣ p+p

∣∣∣ (νx) p
∣∣∣ A(x1, . . . , xn)

where the prefixes π are defined by the syntax:

π ::= τ
∣∣∣ x̄y

∣∣∣ x(y).

The occurrences of y in x(y).p and (νy) p are bound; free and bound names of process
p are defined as usual and we denote them with fn(p) and bn(p) respectively. For each

identifier A there is a definition A(y1, . . . , yn) def= pA (with yi all distinct and fn(pA) ⊆
{y1, . . . , yn}); we assume that, whenever A is used, its arity n is respected. Finally we
require that each process identifier in pA is in the scope of a prefix (guarded recursion).

Some comments on the syntax of π-calculus are now in order. As usual, 0 is the
terminated process. In process π.p the prefix π defines an action to execute before p
is activated. The prefix τ.p describes an internal (invisible) action of the process. The
output prefix x̄y.p specifies the channel x for the communication and the value y that
is sent on x. In the input prefixes x(y).p, name x represents the channel, whereas y is
a formal variable: its occurrences in p are instantiated with the received value. Process
p|q is the parallel composition with synchronization of p and q, whereas p+q is the
nondeterministic choice. Process (νx) p restricts the possible interactions of process p,
disabling communications on channel x.

We use σ, ρ to range over name substitutions, and we denote with {y1/x1 · · · yn/xn}
the substitution that maps xi into yi for i = 1, . . . , n and that is the identity on the
other names.

We now introduce a structural congruence of π-calculus processes. This structural
congruence allows us to identify all the processes which represent essentially the same
system and which differ just for syntactical details. The structural congruence ≡ is the
smallest congruence which respects the following equivalences

(alpha) (νx) p ≡ (νy) (p{y/x}) if y does not appear in p
(sum) p+0 ≡ p p+q ≡ q+p p+(q+r) ≡ (p+q)+r
(par) p|0 ≡ p p|q ≡ q|p p|(q|r) ≡ (p|q)|r
(res) (νx)0 ≡ 0 (νx) (νy) p ≡ (νy) (νx) p

(νx) (p|q) ≡ p|(νx) q if x does not appear in p

The structural congruence is useful in practice to obtain finite state representations for
classes of processes. It can be used to garbage-collect terminated component — by

6 U. Montanari and M. Pistore

exploiting rule p|0 ≡ p — and unused restrictions — by using the rules above, if α does
not appear in p then (να) p ≡ p: in fact, (νx) p ≡ (νx) (p|0) ≡ p|(νx)0 ≡ p|0 ≡ p.

By exploiting the structural congruence ≡, each π-calculus process can be seen as a
set of sequential processes that act in parallel, sharing a set of channels, some of which
are global (unrestricted) while some other are local (restricted). Each sequential process
is represented by a term of the form

s ::= π.p
∣∣∣ p+p

∣∣∣ A(x1, . . . , xn)

that can be considered as a “program” describing all the possible behaviors of the se-
quential process.

The ground semantics of the π-calculus is the simplest operational semantics that
can be defined for this language. It differs from other semantics, such as the early and
late semantics, in the management of input transitions [MPW93]. According to the early
semantics, process x(y).p can perform a whole bunch of input transitions

x(y).p xz−→ p{z/y}
corresponding to the different names z that the environment can send to the process to
instantiate the formal input parameter y. In the ground semantics, instantiation of the
input parameters are not taken into account, and process x(y).p can perform only one
input transition:

x(y).p
x(y)−→ p.

Ground bisimilarity is easy to check1. However, it is less discriminating than early
bisimilarity, and does not capture the possibility for the environment of communicating
an already existing name during an input transition of a process. For instance,

x(y).(ȳy.0|z(w).0) and x(y).(ȳy.z(w).0 + z(w).ȳy.0)

are not equivalent according to the early semantics, since, performing input xz we ob-
tain

z̄z.0|z(w).0 and ȳy.z(w).0 + z(w).ȳy.0

and a synchronization (i.e., a τ transition) is possible in the first process but not in the
second. However,

x(y).(ȳy.0|z(w).0) and x(y).(ȳy.z(w).0 + z(w).ȳy.0)

are equivalent according to the ground semantics since the reception of the already
existing name z is not allowed. For simplicity, in this paper we consider only the
ground semantics. The presented results, however, can easily be extended to the other
π-calculus semantics.

The ground actions that a process can perform are defined by the following syntax:

µ ::= τ
∣∣∣ x(y)

∣∣∣ x̄y
∣∣∣ x̄(y)

1 . . . and, as we will see, easy to model with HD-automata.

and are called respectively synchronization, input, free output and bound output actions.

History-Dependent Automata: An Introduction 7

Table 1. Free and bound names of π-calculus actions

µ fn(µ) bn(µ) n(µ)

τ ∅ ∅ ∅
x(y) {x} {y} {x, y}
xy {x, y} ∅ {x, y}

x(y) {x} {y} {x, y}

Table 2. Ground operational semantics of π-calculus

[PREF] π.p
π−→ p [SUM] p1

µ−→ p′

p1+p2
µ−→ p′

[COMM] p1
x̄y−→ p′

1 p2
x(z)−→ p′

2

p1|p2
τ−→ p′

1|(p′
2{y/z})

[PAR] p1
µ−→ p′

1

p1|p2
µ−→ p′

1|p2

if bn(µ) ∩ fn(p2) = ∅

[OPEN] p
x̄y−→ p′

(νy) p
x̄(y)−→ p′

if x �= y [CLOSE] p1
x̄(y)−→ p′

1 p2
x(y)−→ p′

2

p1|p2
τ−→ (νy) (p′

1|p′
2)

[RES] p
µ−→ p′

(νx) p
µ−→ (νx) p′ if x �∈ n(µ)

[IDE]
pA{y1/x1 · · · yn/xn} µ−→ p′

A(y1, . . . , yn)
µ−→ p′ if A(x1, . . . , xn)

def
= pA

The free names, bound names and names of an action µ, respectively written fn(µ),
bn(µ) and n(µ), are defined as in Table 1.

The transitions for the ground operational semantics are defined by the axiom
schemata and the inference rules of Table 2. We remind that rule

p ≡ p′ p′
µ−→ p′′ p′′ ≡ p′′

p
µ−→ p′′

is implicitly assumed.
Notice that the actions a π-calculus process can perform are different from the pre-

fixes. This happens due to the bound output actions. These actions are specific of the
π-calculus; they represent the communication of a name that was previously restricted,
i.e., it corresponds to the generation of a new channel between the process and the
environment: this phenomenon is called name extrusion.

Now we present the definition of the ground bisimulation for the π-calculus.

Definition 5 (ground bisimulation). A relation R over processes is an ground simu-
lation if whenever p R q then:

for each p
µ−→ p′ with bn(µ) ∩ fn(p|q) = ∅ there is some q

µ−→ q′ such that
p′ R q′.

A relation R is an ground bisimulation if both R and R−1 are ground simulations.

8 U. Montanari and M. Pistore

Two processes p and q are ground bisimilar, written p ∼g q, if p R q for some
ground bisimulation R.

In the definition above, clause “bn(µ) ∩ fn(p|q) = ∅” is necessary to guarantee
that the name, that is chosen to represent the newly created channel in a bound output
transition, is fresh for both the processes. This clause is necessary since equivalent
processes may have different sets of free names.

As for other process calculi, a labelled transition system is used to give an oper-
ational semantics to the π-calculus. However, this way to present the operational se-
mantics has some disadvantages. Consider process q = (νy) x̄y.y(z).0. It is able to
generate a new channel by communicating name y in a bound output. The creation of
a new name is represented in the transition system by means of an infinite bunch of

transitions q
x̄(w)−→ w(z).0, where, in this case, w is any name different from x: the

creation of a new channel is modeled by using all the names which are not already in
use to represent it. As a consequence, the definition of bisimulation is not the ordinary
one: in general two bisimilar process can have different sets free names, and the clause
“bn(µ) ∩ fn(p|q) = ∅” has to be added in Definition 5 to deal with those bound output
transitions which use a name that is used only in one of the two processes. The presence
of this clause makes it difficult to reuse standard theory and algorithms for bisimulation
on the π-calculus — see for instance [Dam97].

3 History-Dependent Automata

Ordinary automata are successful basic process calculi like CCS. For more sophisti-
cated calculi, however, they are not: in fact, they are not able to capture the particular
structures of these languages, that is represented in ordinary automata only in an im-
plicit way. As a consequence, infinite-state automata are often obtained also for very
simple programs. To model these languages, it is convenient to enrich states and labels
with (part of) the information of the programs, so that the particular structures manip-
ulated by the languages are represented explicitly. These enriched automata are hence
more adherent to the languages than ordinary automata.

Different classes of enriched automata can be defined by changing the kind of ad-
ditional information. Here we focus on a simple form of enriched automata. They are
able to manipulate generic “resources”: a resource can be allocated, used, and finally
released. At this very abstract level, resources can be represented by names: the allo-
cation of a resource is modeled by the generation of a fresh name, that is then used to
refer to the resource; since we do not assume any specific operation on resources, the
usage of a resource in a transition is modeled by observing the corresponding name in
the label; finally, a resource is (implicitly) deallocated when the corresponding name is
no more referenced.

We call this class of enriched automata History-Dependent Automata, or HD-au-
tomata in brief. In fact, the usage of names described above can be considered a way to
express dependencies between the transitions of the automaton; a transition that uses a
name depends on the past transition that generated that name.

History-Dependent Automata: An Introduction 9

In this section we introduce HD-automata and HD-bisimulation and we show that
they are able to capture in a convenient way the ground semantics of π-calculus, where
the names are use to represent the communication channels.

3.1 HD-Automata

HD-automata extend ordinary automata by allowing sets of names to appear explicitly
in states and labels. We assume that the names that are associated to a state or a label
are local names and do not have a global identity. This is very convenient, since a
single state of the HD-automaton can be used to represent all the states of a system
that differ just for a renaming (that is, HD-automata work up to bijective substitutions
of names). In this way, however, each transition is required to represent explicitly the
correspondences between the names of source, target and label. As the reader can see
in Figure 1, to represent these correspondences we associate a set of names also to each
transition, and we embed the names of the source and target states, and of the label into
the names of the transition.

Technically, we represent states, transitions and labels of a HD-automaton by means
of named sets and use named functions to associate a source state, a target state and a
label to each transition.

In a named set E, each element e is enriched with a set of names that we denote with
E[e]. A function from named set E to named set F maps each element e of the first in an
element f of the second; moreover, it also fixes a correspondence between the names
of e and the names of f . More precisely, this correspondence provides an embedding
of the names of the target element f into the names of the source element e; that is, the
names of f are seen, through the name correspondence, as a subset of the names of e.

Now we introduce some notation on functions that we will use extensively in the
following. Then we define formally named sets and, based on them, the HD-automata.

Notation 6. A relation R on sets A and B is a subset of A × B. If (a, b) ∈ R then we
also write a R b. In this case, dom(R) = {a | (a, b) ∈ R} is the domain of R and
cod(R) = {b | (a, b) ∈ R} is its codomain. We denote with R−1 the inverse relation
of R; that is, R−1 = {(b, a) | (a, b) ∈ R} ⊆ B × A. If R is a relation on A and B
and S is a relation on B and C, then we denote with R;S the composition of R and S;
that is, R;S = {(a, c) | (a, b) ∈ R and (b, c) ∈ S} ⊆ A × C.

Special notations are used for particular classes of relations.

We represent with f : A → B a function from set A to set B; that is, f ⊆ A × B such
that for each a ∈ A there is exists exactly one a ∈ A such that (a, b) ∈ f .

We represent with f : A ↼⇀ B a partial bijection from set A to set B; that is, f ⊆ A×B
such that if (a, b), (a′, b′) ∈ f then a = a′ iff b = b′.
We represent with f : A ↼→ B an injection from set A to set B; that is, f ⊆ A × B
such that for each a ∈ A there exists exactly one b ∈ B such that (a, b) ∈ f , and for
each b ∈ B there is at most one a ∈ A such that (a, b) ∈ f .

We represent with f : A ←⇀ B an inverse injection from set A to set B; that is,
f ⊆ A×B such that for each b ∈ B there exists exactly one a ∈ A such that (a, b) ∈ f ,
and for each a ∈ A there is at most one b ∈ B such that (a, b) ∈ f .

10 U. Montanari and M. Pistore

We represent with f : A ←→ B a total bijection from set A to set B; that is, f ⊆ A×B
such that for each a ∈ A there exists exactly one b ∈ B such that (a, b) ∈ f and,
conversely, for each b ∈ B there exists exactly one a ∈ A such that (a, b) ∈ f .

We use also on these subclasses the notations that we have introduced on relations to
denote domain, codomain, inverse and composition.

Definition 7 (named sets). Let N be an infinite denumerable set of names and let
P(N) be the power-set of N .
A named set E is a set, denoted by E, and a family of subset of names indexed by E,
namely {E[e] ⊆ N}e∈E , or, equivalently E[] is a map from E to P(N).
Given two named sets E and F, a named function m : E → F is a function on the sets
m : E → F and a family of name embeddings indexed by m, namely {m[e] : E[e] ←⇀
F[f]}(e,f)∈m:

E

m

��

� e�

m

��

E[e]

F � f F[f]
�

m[e]

��

A named set E is finitely named if E[e] is finite for each e ∈ E. A named set E is finite
if it is finitely named and set E is finite.

We remark that, in the definition of named function, we use an inverse injection from
E[e] to F[f] to represent the correspondence between the names of e and the names of
f : this inverse injection, in fact, can be seen as an embedding of the names of f into the
names of e.

Now we define HD-automata: essentially, they have the same components of ordi-
nary automata (Definition 1), but named sets and named functions are use rather than
plain sets and functions.

Definition 8 (HD-automata). A HD-automaton A is defined by:

– a named set L of labels;
– a named set Q of states;
– a named set T of transitions;
– a pair of named functions s, d : T → Q, which associate to each transition the

source and destination states respectively (and embed the names of the source and
of the destination states into the names of the transition);

– a named function o : T → L, which associates a label to each transition (and
embeds the names of the label into the names of the transition);

– an initial state q0 ∈ Q and an initial embedding σ0 : Q[q0] ↼→ N of the local
names of q0 into the infinite, denumerable set N of global names.

Let T[t]old
def= {n ∈ T[t] | n ∈ dom(s[t])} and T[t]new

def= {n ∈ T[t] | n �∈ dom(s[t])}
be respectively the old names and the new names of transition t ∈ T .
A HD-automaton is finitely named if L, Q and T are finitely named; it is finite if, in
addition, Q and T are finite.

History-Dependent Automata: An Introduction 11

q

h

a

b

l

t

m n o

g

k

c v

xu

w z

q′

Fig. 1. A transition t : q
l−→ q′ of a HD-automaton

Let t be a generic transition of a HD-automaton such that s(t) = q, d(t) = q′ and

o(t) = l (in brief t : q
l−→ q′); one of such transition is represented in Figure 1. Then

s[t] : T[t] ←⇀ Q[q] embeds, by means of an inverse injection, the names of q into the
names of t, whereas d[t] : T[t] ←⇀ Q[q′] embeds the names of q′ into the names of t;
in this way, a partial correspondence is defined between the names of the source state
and those of the target; so, in the case of the transition in figure, name h of the target
state corresponds to name b of the source. The names that appear in the source and not
in the target (that is, names a and c in Figure 1) are discarded, or forgotten, during the
transition, whereas the names that appear in the target but not in the source (that is,
names g and k in figure) are created during the transition.

3.2 From Ground π-Calculus to Basic HD-Automata

We are interested in the representation of the ground π-calculus semantics as HD-
automata. First we define the named set of labels Lπg for this language: we have to
distinguish between synchronizations, bound inputs, free outputs and bound outputs.
Thus the set of labels is

Lπg = {tau, bin, out, out2, bout}

where out2 is used when subject and object names of free outputs coincide (these
special labels are necessary, since the function from the names associated to a label into
the names associated to a transition must be injective). No name is associated to tau,
one name (n) is associated to out2, and two names (nsub and nobj) are associated to
bin, out and bout.

In order to associate a HD-automaton to a π-calculus process, we have to represent
the derivatives of the process as states of the automaton and their transitions as transi-
tions in the HD-automaton; the names corresponding to a state are the free names of
the corresponding process, the names corresponding to a transition are the free names
of the source state plus, in the case of a bound input and bound output transition, the

12 U. Montanari and M. Pistore

new name appearing in the label of the transition. A label of Lπg is associated to each
transition in the obvious way.

This naive construction can be improved to obtain more compact HD-automata.
Consider for instance process p = (νz) x̄z.B(x, y, z); it can perform an infinite num-
ber of bound output transitions, depending on the different extruded name. In the case
of HD-automata, due to the local nature of names, it is not necessary to consider all the
different bound output (and bound input) transitions that differ only on the name used to
denote the new created channel. The syntactic identity of that name, in fact, is inessen-
tial in the model. A single transition can be chosen from each of these infinite bunches.

Here we use transition p
x(z)−→ p′ where z = min

(N \ fn(p)
)
. It is worth to stress out

that, differently from the case of ordinary automata, where particular care is needed in
the choice of this transition, in the case of HD-automata any policy for choosing the
fresh name will work: in this case, in fact, we do not have to guarantee that equivalent
states choose the same name.

Definition 9 (representative transitions). A π-calculus transition p
µ−→ q is a repre-

sentative transition if

n(µ) ⊆ fn(p) ∪ {
min

(N \ fn(p)
)}

.

According to this definition, all the synchronization and free output transitions are rep-
resentative (in this case n(µ) ⊆ fn(p)). A bound input or a bound output is represen-
tative only if the communicated name is the smallest name not appearing free in the
process.

The following lemma shows that the representative transitions express, up to α-
conversion, all the behaviors of a process.

Lemma 1. Let p
µ−→ q, with µ = ax (resp. µ = ā(x)), be a non-representative π-

calculus transition. Then there is some representative transition p
µ′
−→ q′, with µ′ = ay

(resp. µ′ = ā(y)), such that q′ = q{y/x x/y}.

If only representative transitions are used when building a HD-automaton from a
π-calculus process, the obtained HD-automaton is finite-branching, i.e., it has a finite
set of transitions from each state.

Another advantage of using local names is that two processes differing only for
a bijective substitution can be collapsed in the same state in the HD-automaton: we
assume to have a function norm that, given a process p, returns a pair (q, σ) = norm(p),
where q is the representative of the class of processes differing from p for bijective
substitutions and σ : fn(p) ←→ fn(q) is the bijective substitution such that q = pσ.

Definition 10 (from π-calculus to HD-automata). The HD-automaton Aπg
p corre-

sponding to the ground semantics of π-calculus process p is defined as follows:

– if norm(p) = (q0, σ0) then:
• q0 ∈ Q is the initial state and Q[q0] = fn(q0);
• σ−1

0 : fn(q0) ←→ fn(p) is the initial embedding;

History-Dependent Automata: An Introduction 13

Table 3. Relations between π-calculus labels and labels of HD-automata

µ τ x(y) x̄y x̄x x̄(y)

l tau bin out out2 bout

� = λ(�) ∈ n(µ) / x y x y x x y

� = κ(�) ∈ Lπg [l] / nsub nobj nsub nobj n nsub nobj

– if q ∈ Q, t : q
µ−→ q′ is a representative transition and norm(q′) = (q′′, σ), then:

• q′′ ∈ Q and Q[q′′] = fn(q′′);
• t ∈ T and T[t] = fn(q) ∪ bn(µ);
• s(t) = q, d(t) = q′′, s[t] = idfn(q) and d[t] = σ;
• o(t) = l and o[t] = κ are defined as in Table 3.

Table 3 defines the correspondence between the labels of π-calculus transitions and
the HD-automaton labels: so, for instance, an input action x(y) of a π-calculus process
is represented in the HD-automaton by means of label bin. Moreover, the table also
fixes the correspondence between the names that appear in the π-calculus label and
the names of the HD-automaton label. This correspondence is defined by means of two
functions: function κ maps the names of a π-calculus label µ into the names of the corre-
sponding label l of the HD-automaton, while λ maps the names of l into the names of µ.
Both functions are total bijections, and clearly κ = λ−1. In the case of the input action
x(y), we have n(x(y)) = {x, y} and Lπg [bin] = {nsub, nobj}; in this case, according
to Table 3, functions κ : {x, y} → {nsub, nobj} and λ : {nsub, nobj} → {x, y} are
defined as follows: κ(x) = nsub and λ(nsub) = x; κ(y) = nobj and λ(nobj) = y. We
have used function κ in Definition 10; function λ will become useful in the following.

For each π-calculus process p, the HD-automaton Aπg
p is obviously finitely named.

Now we identify a class of processes that generate finite HD-automata. This is the class
of finitary π-calculus processes.

Definition 11 (finitary processes). The degree of parallelism deg(p) of a π-calculus
process p is defined as

deg(0) = 0 deg(π.p) = 1
deg((νx) p) = deg(p) deg(p|q) = deg(p) + deg(q)

deg(p+q) = max{deg(p),deg(q)} deg(A(x1, . . . , xn)) = 1

A π-calculus process p is finitary if max{deg(p′) | p
µ1−→ · · · µi−→ p′} < ∞.

Theorem 1. Let p be a finitary π-calculus process. Then the HD-automaton Aπg
p is

finite.

We remark that, it is only semidecidable whether a process is finitary. Also in this
case, however, there is a syntactic conditions that guarantees that a π-calculus process
is finitary: the finite-control condition. A process p has a finite control if no parallel
composition appears in the recursive definitions used by p.

Corollary 1. Let p be a finite-control π-calculus process. Then the HD-automaton Aπg
p

is finite.

14 U. Montanari and M. Pistore

3.3 Bisimulation on HD-Automata

We introduce now bisimilarity on HD-automata and give some of its basic properties.
We also show that ground bisimilarity of π-calculus processes is captured exactly by
the bisimulation on HD-automata.

Due to the private nature of the names appearing in the states of HD-automata,
bisimulations cannot simply be relations on the states; they must also deal with name
correspondences: a HD-bisimulation is a set of triples of the form 〈q1, δ, q2〉 where q1

and q2 are states of the automata and δ is a partial bijection between the names of
the states. The bijection is partial since we allow for equivalent states with different
numbers of names.

Suppose that we want to check if states q1 and q2 are bisimilar via the partial bijec-

tion δ : Q[q1] ↼⇀ Q[q2] and suppose that q1 can perform a transition t1 : q1
l−→ q′1:

an instance of this situation is represented in Figure 2. Then we have to find a transition

t2 : q2
l−→ q′2 that matches t1, i.e., not only the two transitions must have the same

label, but also the names associated to the labels must be used consistently. This means
that, given a name n of the label:

– either n is old in both transitions, i.e., it corresponds to some name n1 of state q1

and to some name n2 of q2 (via the suitable name embeddings), and these names
n1 and n2 are in correspondence by δ; this is the case of name h of label l in Figure
2: it corresponds to names a1 and a2 in the source states, and these are related by δ;

– or n is new in both transitions, i.e., it does not correspond to any name n1 of state
q1, nor to any name n2 of q2; this is the case of name k of label l in Figure 2: in
fact, the corresponding names y1 and y2 in the transitions are new.

This behavior is obtained by requiring that a partial bijection ζ : T[t1] ↼⇀ T[t2] exists
such that: (i) ζ coincides with δ if restricted to the names of the source states (obvi-
ously, via the embeddings s[t1] and s[t2]), and extends δ with a partial correspondence
ξ between the new names of t1 and t2; (ii) the names associated to the labels are the
same, via ζ, and (iii) the destination states q′1 and q′2 are bisimilar via a partial bijection
δ′ which is compatible with ζ (i.e., if two names are related by δ′ in the destination
states, then the corresponding names in the transitions are related by ζ). The reader can
check that all these requirements are satisfied in Figure 2.

We remark that it is not required that two names of the destination states are related
by δ′ if the corresponding names of the transitions are related by ζ. That is, we allow
some of the correspondences that hold in the transitions to be discarded in the destina-
tion states. In Figure 2, for instance, names f1 and f2 of the target states are not related
by δ′, even if the corresponding names of the transitions, namely z1 and z2, are related
by ζ. We will comment further on this choice later in this section. We anticipate that the
same equivalence on HD-automata is obtained also by requiring that no correspondence
can be discarded in the target states.

Definition 12 (HD-bisimulation). Let A1 and A2 be two HD-automata. A HD-sim-
ulation for A1 and A2 is a set of triples R ⊆ {〈q1, δ, q2〉 | q1 ∈ Q1, q2 ∈ Q2, δ :
Q1[q1] ↼⇀ Q2[q2]} such that, whenever 〈q1, δ, q2〉 ∈ R then:

History-Dependent Automata: An Introduction 15

ξ

δ′ζ

q′1

q2 q′2

l

l

δ

q1

a1

c1

c2

a2

h k

w1

x1

y1

z1

z2

y2

d1

f1

d2

f2

b1

e1

t1

t2

h k

e2

x2

Fig. 2. A step of bisimulation on HD-automata

for each t1 : q1
l−→ q′1 in A1 there exist some t2 : q2

l−→ q′2 in A2, some
ξ : T1[t1]new ↼⇀ T2[t2]new, and some ζ : T1[t1] ↼⇀ T2[t2] such that:

– ζ =
(
s1[t2]; δ; s2[t2]−1

) ∪ ξ,
– o1[t1] = ζ; o2[t2],
– 〈q′1, δ′, q′2〉 ∈ R where δ′ ⊆ d1[t1]−1; ζ; d2[t2].

A HD-bisimulation for A1 and A2 is a set of triples R such that R is a HD-simulation
for A1 and A2 and R−1 = {〈q2, δ

−1, q1〉 | 〈q1, δ, q2〉 ∈ R} is a HD-simulations for
A2 and A1.

A HD-bisimulation for A is a HD-bisimulation for A and A.
The HD-automata A1 and A2 are HD-bisimilar (written A1 ∼ A2) if there ex-

ists some HD-bisimulation for A1 and A2 such that 〈q01, δ, q02〉 ∈ R for some δ ⊆
σ01;σ−1

02 .

Now we present some basic properties of HD-bisimulations.

Proposition 1. Let {Ri | i ∈ I} be a (finite or infinite) set of HD-bisimulations for A1

and A2. Then
⋃

i∈I Ri is a HD-bisimulation for A1 and A2.

16 U. Montanari and M. Pistore

This proposition allows us to define the greatest bisimulation between two automata.

Definition 13 (greatest HD-bisimulation). We denote with RA1;A2 the greatest HD-
bisimulation for A1 and A2, i.e.:

RA1;A2

def= {〈q1, δ, q2〉 | 〈q1, δ, q2〉 ∈ R, R HD-bisimulation for A1 and A2}
We denote with RA the greatest HD-bisimulation for A.

By the previous proposition, RA1;A2 and RA are HD-bisimulations.

Proposition 2. If R is a HD-bisimulation for A1 and A2 and S is a HD-bisimulations
for A2 and A3 then R� S is a HD-bisimulation for A1 and A3, where:

R� S def= {〈q1, (δ; δ′), q3〉 | 〈q1, δ, q2〉 ∈ R, 〈q2, δ
′, q3〉 ∈ S}.

Proposition 3. If R is a HD-bisimulation for A1 and A2 then R̂ is a HD-bisimulation
for A1 and A2, where:

R̂ def= {〈q1, δ
′, q2〉 | 〈q1, δ, q2〉 ∈ R, δ ⊆ δ′}.

It is easy to see that RA is closed for -̂ and - � -. Moreover, relation ∼ is an equiv-
alence on HD-automata: symmetry and reflexivity are immediate, whereas transitivity
derives from the previous proposition.

Proposition 3 shows that, whenever two states of an automaton are equivalent via
some partial correspondence of names, they also are equivalent for all the correspon-
dences obtained by adding new relations between the names. By exploiting this fact,
we can define HD-bisimulation with a stronger condition on the correspondence δ′ for
the destination states: in fact, we can require δ′ = d1[t1]−1; ζ; d2[t2]. Also with this
alternative definition the same equivalence on HD-automata is obtained, and also the
greatest bisimulation RA1;A2 does not change.

The possibility of discarding correspondences in the definition of δ′, though, is very
convenient. First of all, it permits to exhibit smaller relations to prove HD-bisimilarity of
two HD-automata. Furthermore, some important properties of HD-bisimulation do not
hold if the discarding is not allowed. This is the case for instance of the concatenation
property of Proposition 2: in fact, if we consider the HD-automaton of Figure 3, then
relations

R = {〈q1, δ12, q2〉, 〈q′1, ∅, q′2〉} with δ12(a) = b

S = {〈q2, δ23, q3〉, 〈q′2, ∅, q′3〉} with δ23(b) = c

are HD-bisimulations; however, their concatenation

R� S = {〈q1, δ13, q3〉, 〈q′1, ∅, q′3〉} with δ13(a) = c

is not a HD-bisimulation if we do not permit to discard name correspondences, since
names a′ and c′ of the target states are not related by R� S, even if the corresponding
names a and c of the source states are related.

History-Dependent Automata: An Introduction 17

q1 q2 q3

q′1 q′2 q′3

l l l

a b c

a′ c′

t3t2t1

Fig. 3. A tricky example for concatenation of HD-bisimulations

3.4 Global States and Global Bisimulation

Now we give an alternative characterization of HD-bisimulation, which is based on
global (rather than local) names. This alternative characterization is very useful to show
that HD-bisimulation, when applied to HD-automata obtained from π-calculus pro-
cesses, coincides with bisimilarity relation ∼g.

We have seen that a state of a HD-automaton is obtained from a π-calculus process
by normalizing its names, so that all the processes that differ for a renaming are repre-
sented by the same state. Conversely, a particular π-calculus process can be recovered
from a state q of the HD-automaton by giving a global identity of the local names of
q. Following this intuition, if q is a state of a HD-automaton and σ : Q[q] ↼→ N , then
(q, σ) is a global state, i.e., a state where a global identity is assigned to the names.
Global transitions are defined similarly.

Definition 14 (global state and global transition). A global state of a HD-automaton
A is a pair g = (q, σ), where q ∈ Q and σ : Q[q] ↼→ N . We denote with GA the set of
global states of A. We denote with GA the named set of global state of A, obtained by

defining GA[(q, σ)] def= σ(Q[q]).
A global transition is a pair u = (t, ρ), where t ∈ T and ρ : T[t] ↼→ N . We denote
with UA the set of global transitions of A. We denote with UA the named set of global

transitions of A, obtained by defining UA[(t, ρ)] def= ρ(U[t]). Moreover we use the

notations UA[(t, ρ)]old
def= ρ(T[t]old) and UA[(t, ρ)]new

def= ρ(T[t]new).

If t : q
l−→ q′ then we write (t, ρ) : (q, σ)

(l,λ)−→ (q′, σ′), where σ = s[t]−1; ρ, λ =
o[t]−1; ρ and σ′ = d[t]−1; ρ.

For the global states and global transitions of a HD-automaton we use notations
similar to those for the components of the HD-automaton; so, the global transitions of
HD-automaton B are denoted by TB; also, if we consider two HD-automata A1 and
A2, then their global states are denoted by G1 and G2 respectively.

18 U. Montanari and M. Pistore

Now we give the definition of bisimulation which is based on global states and
global transitions.

Definition 15 (global bisimulation). Let A1 and A2 be two HD-automata. A global
simulation for A1 and A2 is a relation R ⊆ G1×G2 such that whenever g1 R g2 then:

for all u1 : g1
k−→ g′1 in U1 with U1[u1]new ∩ G2[g2] = ∅ there exists some

u2 : g2
k−→ g′2 such that g′1 R g′2.

A global bisimulation for A1 and A2 is a relation R ⊆ G1 × G2 such that both R is a
global simulation for A1 and A2 and R−1 is a global simulation for A2 and A1.
The HD-automata A1 and A2 are global-bisimilar iff there exists some global bisimu-
lation for A1 and A2 such that (q01, σ01) R (q02, σ02).

Notice the clause “U1[u1]new ∩ G2[g2] = ∅” in the definition above, that discards
all those global transitions of g1 that use as new name a name which is old in g2. This
is necessary in the global bisimulation, since names have a global identity here; in fact,
this clause plays the same role of clause “bn(µ) ∩ fn(p|q) = ∅” in the definitions of
bisimulation in π-calculus (Definition 5).

Global bisimilarity coincides with HD-bisimilarity.

Proposition 4. Two HD-automata are HD-bisimilar if and only if they are global bisim-
ilar.

We now show that two π-calculus processes are bisimilar if and only if the corre-
sponding HD-automata are bisimilar. To obtain this result we exploit the global char-
acterization of HD-bisimulation presented in the previous section. The following is the
main lemma.

Lemma 2. Let (q, σ) be a global state of the HD-automaton Aπg
p corresponding to a

π-calculus process p. Then:

– if qσ
µ−→ q′′ is a π-calculus transition with bn(µ)∩ fn(qσ) = ∅, then there is some

global transition (t, ρ) : (q, σ)
(l,λ)−→ (q′, σ′) of Aπg

p ; and

– if (t, ρ) : (q, σ)
(l,λ)−→ (q′, σ′) is a global transition of Aπg

p , then there is some π-
calculus transition qσ

µ−→ q′′

where in both cases q′′ = q′σ′, and (l, λ) are related to µ as in Table 3.

Theorem 2. Let p1 and p2 be π-calculus processes. Then p1 ∼g p2 iff Aπg
p1 ∼ Aπg

p2 .

4 Minimization of HD-Automata

In this section we address the problem of defining minimal realizations for HD-au-
tomata. As we have already discussed for ordinary automata, having a minimal canoni-
cal representative for a class of bisimilar automata is important both from a theoretical
point of view and from a practical point of view. Unfortunately enough, minimization is

History-Dependent Automata: An Introduction 19

p

q

t1 t1

t1t′1

α

α

α

α

A

B

1 2

3 4

Fig. 4. Two non isomorphic minimal HD-automata

not possible on the HD-automata we introduced in Section 3. In Figure 4 we show two
equivalent HD-automata: they are both “minimal”, in the sense that it is not possible
to reduce them further; however they are not isomorphic. In each of the HD-automata
there is a single state with two names, and two transitions: each transition exhibits in
the label one of the two names. The difference between the two HD-automata is that the
names are switched along the transitions in HD-automaton B, while they are not in A.
Still, the HD-automata are equivalent: their behavior is symmetric w.r.t. the two names;
and in fact a bisimulation for these HD-automata is:

R = {〈p, δ, q〉, 〈p, δ′, q〉 | δ(1) = 3, δ(2) = 4 and δ′(1) = 4, δ′(2) = 3}

The impossibility of representing explicitly the symmetry between names 1 and 2
(and 3 and 4) is precisely the cause of the impossibility of having a common minimal
realization for the two HD-automata. In fact, there is no way to quotient HD-automaton
A with respect to its greatest bisimulation RA = {〈p, δ, p〉 | δ(1) = 2, δ(2) = 1}.

In the following, we show how this problem can be solved by allowing symmetries
on names to appear explicitly in the states of the HD-automata.

4.1 Symmetries and HD-Automata with Symmetries

In the following we define an extended version of HD-automata where each state, label,
and transition of a HD-automaton is enriched by a set of names and by a symmetry on
this set of names. We start defining symmetries on names and functions between them.

20 U. Montanari and M. Pistore

Definition 16 (symmetries). Let N ∈ N be a set of names. A symmetry Σ on N is a
set of bijections (or permutations) on N that is a group for composition; that is:

– idN ∈ Σ (i.e., Σ contains the identity bijection);
– if σ, σ′ ∈ Σ then σ;σ′ ∈ Σ (i.e., Σ is closed for composition);
– if σ ∈ Σ then there is some σ′ ∈ Σ such that σ;σ′ = idN (i.e., Σ is closed for

inversion).

We denote the set of all the symmetries on N with Sym(N) and with SymN the set of
all symmetries on all subsets N ⊆ N .
For all Σ ∈ GSNames, we denote with n(Σ) the set N of names such that Σ ∈
Sym(N).

We need to extend the HD-automaton not only adding symmetries to states and
transitions, but also defining correspondences between the symmetry that enrich every
transition and those that enrich its source state, target state, and label. This is similar to
what happens in the case of the HD-automata in Section 3: in that case the correspon-
dences are defined by means of inverse injections; in the case of HD-automata with
symmetries these inverse injections are enriches with embeddings on symmetries.

Let Σ ∈ Sym(N) and Σ′ ∈ GS(N ′) be two symmetries and let ρ be an injective
function from N ′ to N . Assume that all the permutations of Σ also appear in Σ′ via the
function ρ, i.e., that ρ;Σ; ρ−1 ⊆ Σ′, where

ρ;Σ; ρ−1 def= {ρ;σ; ρ−1 | σ ∈ Σ}.

Then ρ is an embedding of Σ into Σ′. We remark that ρ;Σ; ρ−1 ⊆ Σ′ can hold only
if there is no permutations in Σ which exchange names in the image of ρ with names
outside the image: otherwise, ρ;Σ; ρ−1 would contain partial correspondences on N
which are not bijections. Therefore, ρ splits N in two separated sets of names, those in
the image and those outside the image. Permutations in Σ can only switch names within
such sets, but cannot switch names within the image with names outside it. Notice also
that the same embedding is defined, in general, by more than one bijection. In fact,
we do not want to distinct between two bijections ρ and ρ′ if there is some symmetry
σ ∈ Σ′ such that ρ′ = ρ;σ. Hence, we define an embedding from Σ to Σ′ as a class of
those equivalent bijections.

Definition 17 (embeddings on symmetries). Let Σ ∈ GS(N) and Σ′ ∈ GS(N ′) be
two symmetries on N . An embedding f of Σ into Σ′ (written f : Σ → Σ′) is a set of
injections from N ′ to N such that:

– if ρ ∈ f , then ρ;Σ; ρ−1 ⊆ Σ′ (i.e., all the permutations of Σ also appear, via f , in
Σ′); and

– if ρ ∈ f then f = Σ′; ρ (i.e., f contains all the variants of the same embedding).

Now we define named sets with symmetries: they are similar to named sets (Defini-
tion 7), but in this case the elements are enriched with symmetries on names, rather than
by sets of names. Based on named sets with symmetries, we then defined HD-automata
with symmetries.

History-Dependent Automata: An Introduction 21

Definition 18 (named sets with symmetries). A named set with symmetries E is a
set denoted by E, and a family of symmetries on N , indexed by E, namely {E[e] ∈
SymN }e∈E , or, equivalently E[] is a map from E to SymN .
Given two named sets with symmetries E and F, a named function with symmetries
m : E → F is a function on the sets m : E → F and a family, indexed by m, of
embeddings on symmetries, namely {m[e] : E[e] → F[f]}(e,f)∈m:

Definition 19 (HD-automata with symmetries). A HD-automaton with symmetries
A is defined by:

– a named set with symmetries L of labels;
– a named set with symmetries Q of states;
– a named set with symmetries T of transitions;
– a pair of named functions with symmetries s, d : T → Q, which associate to each

transition the source and destination states respectively (and embed the symmetry
of the transition into the symmetries of the source and of the destination states);

– a named function with symmetries o : T → L, which associates a label to each
transition (and embeds the symmetry of the transition into the symmetry of the
label);

– an initial state q0 ∈ Q and an initial embedding f0 : {idN } → Q[q0], that gives a
global identity to the local names of q0.

In the initial embedding, {idN } is the symmetry on the full set on names that is com-
posed only by the identity permutation. We remark that the initial embedding f0 gives
a global meaning to the names of the initial state q0 only up to the symmetry Q[q0] that
is defined on these names.

Each HD-automaton can be “promoted” to a HD-automaton with symmetries, by as-
sociating to each state, transition, and label the symmetry consisting only of the identity
permutation. As a consequence, we can easily adapt Definition 10 to map π-calculus
processes into HD-automata with symmetries.

4.2 Bisimulation on HD-Automata with Symmetries

Now we introduce bisimulation on HD-automata with symmetries and describe some
of its basic properties. Similarly to what happens for HD-bisimulations on basic HD-
automata (Section 3.3), also a HD-bisimulation on HD-automata with symmetries is a
set of triples of the form 〈q1, δ, q2〉 where q1 and q2 are states of the automata and δ is
a partial correspondence between the names of the states.

Let us consider the HD-automata with symmetries in Figure 5. We want to check
if states q1 and q2 are bisimilar via the bijection δ. State q1 can perform a transition

t1 : q1
l−→ q′1. We cannot requite that this transition is matched by a single transition

of q2: in fact, in state q1 there is a symmetry between names 1 and 2, so, in transition t1
the name in the label can correspond both to name 1 and to name 2 of the source state.
In state q2 there is no symmetry between names 1 and 2, but there are two transitions,
that use name 1 and 2, respectively. We consider bisimilar these two HD-automata with
symmetries, proviso the target states are bisimilar according to the correspondences

22 U. Montanari and M. Pistore

t1

l

q′1

l

l

q1

q2

t2

t′2

q′′2

q′2

δ

δ′′

δ′

1

2

2

1

Fig. 5. A step of bisimulation on HD-automata with symmetries

δ′ and δ′′ represented in figure; in fact, we do not want to distinguish between the
symmetries in the behaviors that are “declared” in the states and those that are implicit
in the transitions of the HD-automaton with symmetries. So, transition t1 to be matched
by the pair of transitions t2 and t′2, one for each of the symmetric behaviors of t1. In
the definition of bisimulation for HD-automata with symmetries, this is obtained by

requiring that, given transition t1 : q1
l−→ q2, for each injection α1 ∈ s1[t1] there exist

a transition t2 from q2 and an injection α2 ∈ s2[t2] so that t1 and t2 match w.r.t. α1

and α2. In the general case, we have to take into account not only the symmetries of

History-Dependent Automata: An Introduction 23

the source state, but also those of the label and of the target state of a transition. So, a

matching has to be found for a transition t1 : q1
l−→ q′1 and three bijections α1 ∈ s1[t1],

γ1 ∈ l1[t1] and β1 ∈ d1[t1].

Definition 20 (HDS-bisimulation). Let A1 and A2 be two HD-automata with sym-
metries. A HDS-simulation for A1 and A2 is a set of triples R ⊆ {〈q1, δ, q2〉 | q1 ∈
Q1, q2 ∈ Q2, δ : n(Q1[q1]) ↼⇀ n(Q2[q2])} such that, whenever 〈q1, δ, q2〉 ∈ R then:

for each t1 : q1
l−→ q′1 in A1 and for each α1 ∈ s1[t1], γ1 ∈ o1[t1] and

β1 ∈ d1[t1], there exist some t2 : q2
l−→ q′2 in A2, some injections α2 ∈ s2[t2],

γ2 ∈ o2[t2] and β2 ∈ d2[t2], some ξ : n(T1[t1])new ↼⇀ n(T2[t2])new, and
some ζ : n(T1[t1]) ↼⇀ n(T2[t2]) such that:

– ζ =
(
α1; δ;α−1

2) ∪ ξ,
– γ1 = ζ; γ2,
– 〈q′1, δ′, q′2〉 ∈ R where δ′ is such that ζ = β1; δ′;β−1

2 .

A HDS-bisimulation for A1 and A2 is a set of triples R such that R is a HDS-simulation
for A1 and A2 and R−1 = {〈q2, δ

−1, q1〉 | 〈q1, δ, q2〉 ∈ R} is a HDS-simulations for
A2 and A1.

A HDS-bisimulation for A is a HDS-bisimulation for A and A.

The HD-automata with symmetries A1 and A2 are HDS-bisimilar (written A1 ∼ A2)
if there exists some HDS-bisimulation for A1 and A2 such that 〈q01, δ, q02〉 ∈ R for
δ = σ01;σ−1

02 .

If R is a HDS-bisimulation for A1 and A2, and a pair of transitions t1 in A1 and t2
in A2 satisfy the bisimulation condition in definition above holds, then we write, with
a light abuse of notation, that 〈t1, ρ, t2〉 ∈ R, where ρ = α1; δ;α−1

2 .
It is easy to see that, in the case of HD-automata with symmetries consisting only

of identity permutations, this definition of HD-bisimulation coincides with the one of
Definition 12.

We now investigate the basic properties of HD-bisimulation. Similarly to the HD-
bisimulations defined in Section 3, also the HDS-bisimulations are closes w.r.t. union,
concatenation, and operator −̂. As a consequence, greatest HDS-bisimulations exist:
we denote with RA1;A2 the greatest HDS-bisimulation for A1 and A2, and with RA
the greatest HDS-bisimulation for A. Moreover, relation ∼ is an equivalence on HD-
automata with symmetries.

In the case of HDS-bisimulations a new operator can be defined, that closes a bisim-
ulation w.r.t. all the symmetries that are present in the states of the HD-automata.

Proposition 5. If R is a HDS-bisimulation for A1 and A2 then R̃ is a HDS-bisimula-
tion for A1 and A2, where:

R̃ def= {〈q1, δ
′, q2〉 | 〈q1, δ, q2〉 ∈ R, δ′ = σ1; δ;σ2 and σ1 ∈ Q1[q1], σ2 ∈ Q2[q2]}.

4.3 Minimizing HD-Automata with Symmetries

In this section we show that, given a HD-automaton with symmetries A, it is possible
to minimize it, i.e., to define a HD-automaton with symmetries Amin that is bisimilar to

24 U. Montanari and M. Pistore

1 2

Amin

t pα

Fig. 6. A minimal realization for the HD-automata of Figure 4

A and that is “minimal” in the class of HD-automata bisimilar to A — we define below
what is the meaning of “minimal”.

We start by showing that the counter-example on the existence of minimal HD-
automata presented at the beginning of this section (see Figure 4) does not apply to the
case of HD-automata with symmetries. Indeed, the minimal HD-automaton correspond-
ing to the two HD-automata in Figure 4 is represented in Figure 6. HD-automaton Amin

has a single state p, with one infinite repository and two distinct names 1 and 2. More-
over the symmetry associated to state p declares that names 1 and 2 can be switched
without affecting the behavior. HD-automaton Amin has one transition t, that exhibits
one of the two names in the label α. Also the transition and the label have one infinite
repository. In the figure, we have not represented explicitly that the infinite repositories
of p, t and α are in correspondence along the transition. The possibility of declaring the
symmetry on the two names 1 and 2 of state p is the key feature for obtaining a canon-
ical minimal HD-automaton with symmetries. Indeed, this symmetry makes it possible
to use a single transition t of Amin to represent both transitions of A and B — the two
transitions t1 and t2 in the HD-automata differ only for the choice of the name to exhibit
in the action. Moreover, the symmetry between 1 and 2 makes ephemeral the fact that
the two names are exchanged or not along transition t.

We start by describing the fine structure of RA. This will be useful to guide the con-
struction of the minimal automaton. First of all, relation RA is closed for concatenation,
so it defines a partition on the states Q of A; that is, relation ≡A is an equivalence, where

p ≡A q iff 〈p, δ, q〉 ∈ RA for some δ.

Consider two states p, q ∈ Q, and let ∆A(p, q) be the set of correspondences that exist,
according to RA, between the names of p and of q:

∆A(p, q) def= {δ | 〈p, δ, q〉 ∈ RA}.

Let us now consider more in detail ∆A(q, q). It consists of a set of partial mappings
on the names in Q[q]. The fact that these mappings are partial is an evidence that state q

History-Dependent Automata: An Introduction 25

can contain names which do not play any important role in the future behavior: indeed,
according to the definition of ∆A, state q exhibits the same behaviors also if the identity
of the names outside the partial mappings is lost. More precisely, let anA(q) be the
names that appear in the domain of every partial mapping in ∆A(q, q). Then these
are the only active names in state q and all other names can be safely discarded from
the state, since they are not relevant for the future behaviors. The following property
formalized the notion of active names and investigates some of their properties.

Proposition 6. Let A be a HD-automaton, and let

an
A

(q) def=
⋂

δ∈∆A(q,q)

dom(δ) and ∆anA(q) def= {δ ∩ (an
A

× an
A

) | δ∆A(q, q)}

for all q ∈ Q. Then:

1. ∆anA(q) is a symmetry on anA(q);
2. Q[q] ∩ (anA(q) × anA(q)) ⊆ ∆anA(q, q);
3. ∆A(q) = {δ ∈ Q[q] ↼⇀ Q[q] | (δ ∩ (anA(q) × anA(q))) ∈ ∆anA(q)}.

The results described above for the states of an HD-automaton with symmetries also
hold for the transitions. More precisely, let us define

t ≡A t′ iff 〈t, ρ, t′〉 ∈ RA for some ρ.

This relation turns out to be an equivalence. Moreover, by defining

∆A(t, t′) = {ρ | 〈t, ρ, t′〉 ∈ RA},

the results of Proposition 6 also hold for transitions.

We are now ready to define the minimal HD-automaton corresponding to a given
HD-automaton with symmetries A. This minimal realization is obtained by replacing
each class of equivalent states and transitions of A with a single state or transition.
The names associated to states and transitions of the minimal HD-automaton are the
active names and the associated symmetries are those defined by ∆anA: these, in fact,
express all the symmetries that exist between the names, not only those “declared” in
HD-automaton A. We remark that it is the possibility of representing the symmetries
defined by the HDS-bisimulations directly in the states of an automaton that allows for
the definition of minimal HD-automata.

In the definition of the minimal HD-automaton, we denote with [q]≡A the equiv-
alence classes of the states w.r.t. ≡A; that is, [q]≡A = {q′ | q ≡A q′}. We also as-
sume that a canonical representative is defined for any such class, and we denote with
�q�≡A the canonical representative of class [q]≡A ; that is, �q�≡A ∈ [q]≡A and whenever
q ≡A q′ then �q�≡A = �q′�≡A . Similar notations are used for the transitions.

The definition of minimal HD-automaton follows.

Definition 21 (minimal HD-automaton with symmetries). The minimal HD-automa-
ton with symmetries Amin for A is defined as follows:

26 U. Montanari and M. Pistore

– Lmin = L and Lmin[l] = L[l] for each l ∈ Lmin;
– Qmin = {�q�≡A | q ∈ Q, q reachable state} and Qmin[q] = ∆anA(q, q) for every

q ∈ Qmin;
– Tmin = {�t�≡A | t ∈ T, t reachable transition} and Tmin[t] = ∆anA(t, t) for

every t ∈ Tmin;
– omin(t) = o(t) and omin[t] = o[t] for every t ∈ Tmin;
– smin(t) = �s(t)�≡A and smin[t] =

{
σ | σ = (σ′;σ′′) ∩ (anA(�s(t)�≡A) ×

anA(t)) for σ′ ∈ ∆A(s(t), �s(t)�≡A) and σ′′ ∈ s(t)
}

for every t ∈ Tmin;
– dmin(t) = �d(t)�≡A and dmin[t] =

{
σ | σ = (σ′;σ′′) ∩ (anA(�d(t)�≡A) ×

anA(t)) for σ′ ∈ ∆A(d(t), �d(t)�≡A) and σ′′ ∈ d(t)
}

for every t ∈ Tmin;
– q0 min = �q0�≡A and f0 min =

{
σ | σ = (σ′;σ′′) ∩ (anA(�q0�≡A) ×N) for σ′ ∈

∆A(q0, qmin 0) and σ′′ ∈ f0

}
.

In the definition above, by reachable states and reachable transitions we mean those
states and transitions that can be reached from the initial state following the transitions
in the automaton.

A first, important property of minimal HD-automata is that Amin is HDS-bisimilar
to the original HD-automaton A.

Proposition 7. Let A be a HD-automaton with symmetries. Then A ∼ Amin.

Minimal HD-automata are unique, up to isomorphism, for each class of bisimilar
HD-automata.

Theorem 3. Let A and B be two HD-automata with symmetries. Then A ∼ B if and
only if Amin and Bmin are isomorphic.

The obtained HD-automaton Amin is minimal since it has the minimum number of
states and of transitions among the HD-automata that are bisimilar to A; moreover, it
has the maximum set of symmetries in these states and transitions. Notice that increas-
ing the symmetries in states and transitions is considered a step toward minimization: in
fact, if larger symmetries are present, then a smaller number of transitions is sufficient
to represent the same behaviors. If we collapse further states and transitions of Amin, or
if we enlarge symmetries of its states and transitions, a non-equivalent HD-automaton
is obtained.

5 Concluding Remarks

We have presented History-Dependent Automata and we have shown that they are an
operational model particularly adequate for named calculi such as the π-calculus. An
important property that holds only for HD-automata enriched with symmetries is the
existence, in each class of equivalent HD-automata, of a minimal representative. As
it happens for ordinary automata, this minimal HD-automaton can be considered the
semantic object corresponding to the class of equivalent HD-automata.

Several results on HD-automata have not been covered in this paper. An extended
version of HD-automata with symmetries has been defined in [Pis99], in order to cap-
ture the early and late semantics of the π-calculus. In [MP99] a particular variant of

History-Dependent Automata: An Introduction 27

HD-automata, namely HD-automata with negative transitions, is proposed in order to
deal with the asynchronous π-calculus [HT91, ACS98]. In [MP00] a co-algebraic se-
mantics for the π-calculus is defined. It is based on the idea of extending states and
transitions with an algebra of names and symmetries. A variant of HD-automata is
shown to come out naturally as a compact representation of the co-algebraic models.
Finally, a categorical characterization of HD-automata and of HD-bisimulation is given
in [MP98b, MP98a].

HD-automata also provide the core of HAL [FFG+97, GR97], a verification en-
vironment for concurrent systems described in the π-calculus and other named cal-
culi: HD-automata allow for a compact representation of the behaviors of these con-
current systems, and can be used in the algorithms as a common format for named
calculi.

References

[ACS98] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 192(2):291–324, 1998.

[Dam97] M. Dam. On the decidability of process equivalences for the π-calculus. Theoretical
Computer Science, 183(2):215–228, 1997.

[FFG+97] G. Ferrari, G. Ferro, S. Gnesi, U. Montanari, M. Pistore, and G. Ristori. An automata
based verification environment for mobile processes. In Proc. TACAS’97, volume
1217 of LNCS. Springer Verlag, 1997.

[GR97] S. Gnesi and G. Ristori. A model checking algorithm for π-calculus agents. In Proc.
ICTL’97. Kluwer Academic Publishers, 1997.

[HT91] K. Honda and M. Tokoro. On asynchronous communication semantics. In Proc.
ECOOP’91, volume 612 of LNCS. Springer Verlag, 1991.

[IP96] P. Inverardi and C. Priami. Automatic verification of distributed systems: The pro-
cess algebras approach. Formal Methods in System Design, 8(1):1–37, 1996.

[Mad92] E. Madelaine. Verification tools for the CONCUR project. Bullettin of the EATCS,
47:110–126, 1992.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[Mil93] R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specification,

volume 94 of NATO ASI Series F. Springer Verlag, 1993.
[MP98a] U. Montanari and M. Pistore. History dependent automata. Technical Report TR-

11-98, Università di Pisa, Dipartimento di Informatica, 1998.
[MP98b] U. Montanari and M. Pistore. An introduction to history dependent automata.

In Proc. Second Workshop on Higher-Order Operational Techniques in Semantics
(HOOTS II), volume 10 of ENTCS. Elsevier, 1998.

[MP99] U. Montanari and M. Pistore. Finite state verification for the asynchronous π-
calculus. In Proc. TACAS’99, LNCS. Springer Verlag, 1999.

[MP00] U. Montanari and M. Pistore. π-calculus, structured coalgebras and minimal hd-
automata. In Proc. MFCS 2000, volume 1893 of LNCS. Springer Verlag, 2000.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).
Information and Computation, 100(1):1–77, 1992.

[MPW93] R. Milner, J. Parrow, and D. Walker. Modal logic for mobile processes. Theoretical
Computer Science, 114(1):149–171, 1993.

[Par80] D. Park. Concurrency and Automata on Infinite Sequences, volume 104 of LNCS.
Springer Verlag, 1980.

28 U. Montanari and M. Pistore

[Pis99] M. Pistore. History Dependent Automata. PhD thesis, Università di Pisa, Diparti-
mento di Informatica, 1999.

[San93a] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. PhD thesis, University of Edinburgh, 1993.

[San93b] D. Sangiorgi. From π-calculus to higher-order π-calculus – and back. In Proc.
TAPSOFT’93, volume 668 of LNCS. Springer Verlag, 1993.

[Wal95] D. Walker. Objects in the π-calculus. Information and Computation, 116(2):253–
271, 1995.

Mobile Distributed Programming in X-KLAIM�

Lorenzo Bettini and Rocco De Nicola

Dipartimento di Sistemi e Informatica, Università di Firenze,
Viale Morgagni 65, 50134 Firenze, Italy
{bettini, denicola}@dsi.unifi.it

Abstract. Network-aware computing has called for new programming languages
that exploit the mobility paradigm as a basic interaction mechanism. In this pa-
per we present X-KLAIM, an experimental programming language specifically
designed to program distributed systems composed of several components inter-
acting through multiple distributed tuple spaces and mobile code. The language
consists of a set of coordination primitives inspired by Linda, a set of operators
for building processes borrowed from process algebras and a few classical con-
structs for sequential programming. X-KLAIM naturally supports programming
with explicit localities; these are first-class data that can be manipulated like any
other data, and coordination primitives that permit controlling interactions among
located processes. Via a series of examples, we show that many mobile code pro-
gramming paradigms can be naturally implemented by means of the considered
language.

1 Introduction

Technological advances of both computers and telecommunication networks, and de-
velopment of more efficient communication protocols are leading to an ever increas-
ing integration of computing systems and to diffusion of so called Global Computers
[Car96, Car97]. These are massive networked and dynamically reconfigurable infras-
tructure interconnecting heterogeneous, typically autonomous and mobile components,
that can operate on the basis of incomplete information.

Important requirements on applications for Global Computers are [Car99]:

– Scalability: high numbers of users and nodes have to be envisaged;
– Heterogeneity: different operating systems and applications have to inter-operate;
– Autonomy: independent administration of domains has to be guaranteed;
– Adaptability: dynamic and unpredictable changes have to be taken into account;
– Mobility: migration of processes, code and data has to be considered.

Global Computers are thus fostering a new style of distributed programming that
has to take into account variable guarantees for communication, cooperation and mo-
bility, resource usage, security policies and mechanisms for dealing with failures. This

� This work has been funded by EU-FET on Global Computing, project MIKADO IST-2001-
32222 and project AGILE IST-2001-32747. The funding body is not responsible for any use
that might be made of the results presented here.

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 29–68, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

30 L. Bettini and R. De Nicola

has stimulated the proposal of new theories, computational paradigms, linguistic mech-
anisms and implementation techniques. We have thus witnessed the birth of many cal-
culi and kernel languages intended to support programming according to the new style
and to provide tools for formal reasoning over the modeled systems.

In this paper we present X-KLAIM, an experimental programming language specif-
ically designed to program distributed systems composed of several components in-
teracting through multiple tuple spaces and mobile code (possibly object-oriented).
X-KLAIM is based on KLAIM the Kernel Language for Agents Interaction and Mobility
introduced in [DFP99]. The distinguishing features of the approach is the explicit use
of localities for accessing data or computational resources. The choice of its primitives
was heavily influenced by Process Algebras [Hoa85, Mil89] and Linda [Gel85, CG89b].

KLAIM can be seen as an asynchronous higher–order process calculus whose basic
actions are the original Linda primitives enriched with explicit information about the
location of the nodes where processes and tuples are allocated.

The blackboard approach, of which tuple space based models are variants, is one
of the most appreciated model for dealing with mobile agents (see, e.g., [Deu01], that
examines several messaging models for mobile agents) also because of its flexibility.
The Linda asynchronous communication model permits

– time uncoupling: tuples’ life time is independent of the producer process’ life time,
– destination uncoupling: the creator of a tuple is not required to know the future use

or the destination of that tuple,
– space uncoupling: communicating objects need to know a single interface, i.e.,

the operations over the tuple space. This approach is also called flow-of-objects
[AFH99] as opposed to method invocation, which requires many interfaces for the
operations supplied by remote objects.

When moving to open distributed systems and large-scale, multi-users applications,
the Linda coordination model suffers from the lack of modularity and scalability: iden-
tification tags of tuples, which are conceptually part of different contexts, may collide.
In other words, processes of different computations could interfere and a mechanism to
structure communication and hide information, e.g., to create areas restricted to a sub-
set of the processes, is needed. Explicit localities enable the programmer to distribute
and retrieve data and processes to and from the sites of a net and to structure the tuple
space as multiple, located spaces. Moreover, localities, considered as first–order data,
can be dynamically created and communicated over the network. The overall outcome
is a powerful programming formalism that, for example, can easily be used to model
encapsulation. In fact, an encapsulated module can be implemented as a tuple space at
a private locality, and this ensures controlled accesses to data.

The rest of this tutorial is organized as follows. In the next section we provide a short
introduction to Linda, while Section 3 introduces KLAIM and Section 4 shows some
simple programming examples. The syntax and the informal semantics of X-KLAIM

are introduced in Section 5. Some examples are provided in Section 6 and 7. Section 8
explains the connectivity actions of X-KLAIM and Section 9 shows the implementation
of a chat system. In the concluding section we sum up our contribution and briefly
discuss related work.

Mobile Distributed Programming in X-KLAIM 31

2 A Brief Presentation of Linda

Linda [Gel85, CG89b] is a coordination language that relies on an asynchronous and
associative communication mechanism based on a shared global environment called
tuple space, a multiset of tuples. Tuples are ordered sequence of information items
(called fields). There can be actual fields (i.e., expressions, processes, localities, con-
stants, identifiers) and formal fields (i.e., variables). Syntactically, a formal field is de-
noted with !ide, where ide is an identifier. In various Linda dialects, the first field is
required to be an actual field and is usually referred to as the logical name or the tag.
Tuples are usually denoted by t (possibly indexed).

Tuples are anonymous and content-addressable. The basic interaction mechanism is
pattern–matching; it is an indivisible action and it is used to select tuples in a tuple space
(often abbreviated as TS). Two tuples match if they have the same number of fields and
the corresponding fields match: a formal field matches any value of the same type,
and two actual fields match only if they are identical (but two formals never match). For
instance, tuple (“foo”,“bar”,100+200) matches with (“foo”,“bar”, !Val). After match-
ing, the variables of the formal fields get the value of the matched field: in the previous
example, after matching, Val (an integer variable) will contain the integer value 300.

Linda has four primitives for manipulating tuple spaces: two blocking operations
that are used for accessing and removing tuples from TS and two non-blocking opera-
tions that are used for adding tuples to TS.

– in(t) triggers the evaluation of t and then searches for a tuple t ′ in TS that matches
t. If and when t ′ is found, it is removed from TS; the corresponding values of t ′ are
assigned to the variables of T and the process continues. If no matching tuple is
found, the process is suspended until one is available.

– read(t) is similar to in(t), but it does not provoke removal of the matched tuple t ′
from TS.

– out(t) triggers the evaluation of t and adds the outcoming tuple to TS.
– eval(t) is similar to out(t), but the actual evaluation t is not performed by the pro-

cess executing eval(t); a new process is spawned to evaluate t and eventually add
the resulting tuple to TS.

Some versions of Linda [CG89a] also introduce predicative forms of the blocking
operations that are useful when one wants to search for a matching tuple in a tuple space
without running the risk of blocking. The non-blocking version of the retrieval opera-
tions, namely readp and inp act like read and in, but, if no matching tuple is found,
they do not suspend the executing process but simply return false. These operations
can be used where a boolean expression is expected. For instance, readp can be used to
test whether a tuple is present in a tuple space.

It is worth noting that nondeterminism is inherent in the definition of Linda prim-
itives. It arises both when different in/read operations are suspended waiting for the
same tuple and such a tuple becomes available (only one of the suspended operations is
nondeterministically selected to proceed) and when an in/read operation has more than
one matching tuple(one is arbitrarily chosen).

The following example, borrowed from [CG89b], is a simple C-Linda [She90] solu-
tion of the dining philosophers problem. A classical problem of concurrent programming.

32 L. Bettini and R. De Nicola

Five philosophers sit around a circular table. Each philosopher spends his life al-
ternatively thinking and eating. In the center of the table is a large plate of noodles.
A philosopher needs two chopsticks to eat a helping of noodles. Unfortunately, the
philosophers can only afford five chopsticks. One chopstick is placed between each
pair of philosophers and they agree that each will only use the chopstick to his imme-
diate right and left. The problem is programming the philosophers so that they behave
politely and possibly no deadlock arises.

The solution proposed below has an initialization phase that drops on the table 5
chopsticks and, to avoid deadlock, 4 tickets. For eating, a philosopher needs to acquire
first a ticket and then the chopsticks close to him (positions are indicated by the indexes).

phil(i)
int i;
{
while(1) {

think();
in(“room ticket”);
in(“chopstick”, i);
in(“chopstick”, (i+1)mod 5);
eat();
out(“chopstick”, i);
out(“chopstick”, (i+1)mod 5);
out(“room ticket”);
}
}

initialize()
{

int i;
for (i = 0; i < 5; i++) {

out(“chopstick”, i);
eval(phil(i));
if (i < 4) out(“room ticket”);
}
}

The use of actual fields in the argument tuple of an in/read instruction is known as
“structured naming”. It makes TS content–addressable, in the sense that processes may
select from a collection of tuples by matching the value of the component fields. Formal
fields of tuples already in the tuple space are never updated, even when those tuples are
used for matching in/read operations.

The Linda model is known as Generative Communication [Gel85]. Indeed, once a
tuple is added to TS (generated), its life-time is independent from that of the producer
process. This permits writing programs where complex data structures are distributed
to allow different programs to work simultaneously on their elements.

Linda’s communication mechanism, somewhat similarly to “explicit message pass-
ing”, makes the interactions of a program with its environment explicit. Indeed, one
can easily write Linda programs that essentially communicate via messages. Thus the
simple basic Linda model can deal with parallelism of all grain sizes.

3 An Overview of KLAIM

Before describing the basic concepts of X-KLAIM we give a very brief introduction
to KLAIM (we refer the interested reader to [BBD+03] and to the KLAIM web page,
http://music.dsi.unifi.it, for more complete descriptions of the formal model).

KLAIM extends Linda by handling multiple distributed tuple spaces. Tuple spaces
are placed on nodes (or sites), which are part of a net. Each node contains a tuple space

Mobile Distributed Programming in X-KLAIM 33

and number of processes in execution, and can be accessed through its locality. There
are two kinds of localities: physical localities are the identifiers through which nodes
can be uniquely identified within a net; logical localities are symbolic names for nodes.
A reserved logical locality, self, can be used by processes to refer to their execution
node. Physical localities have an absolute meaning within the net, while logical locali-
ties have a relative meaning depending on the node where they are interpreted and can
be thought as aliases for network resources. Logical localities are associated to physical
localities through allocation environments, represented as partial functions. Each node
has its own environment that, in particular, associates self to the physical locality of
the node. A node is represented as s : :ρP, where s is the physical locality, P are pro-
cesses running on the node and ρ is the allocation environment (omitted if not relevant).
A net is then the parallel composition of nodes: s1 : :ρ1P1 ‖ . . . ‖ sn : :ρnPn.

KLAIM processes may run concurrently, both at the same node or at different nodes,
and can execute the following operations over tuple spaces and nodes:

– in(t)@l: evaluates tuple t and looks for a matching tuple t ′ in the tuple space located
at l. Whenever a matching tuple t ′ is found, it is removed from the tuple space.
The corresponding values of t ′ are then assigned to the formal fields of t and the
operation terminates. If no matching tuple is found, the operation is suspended until
one is available.

– read(t)@l: differs from in(t)@l only because the tuple t ′ selected by pattern-
matching is not removed from the tuple space located at l.

– out(t)@l: adds the tuple resulting from the evaluation of t to the tuple space located
at l.

– eval(P)@l: spawns process P for execution at l. This primitive, although apparently
more restrictive, is indeed more general because we can simulate eval(t)@l by
means of eval(out(t))@l

– newloc(l): creates a new node in the net and binds its physical locality to l. The
node can be considered as a “private” node because it can be accessed by the other
nodes only if the creator communicates the value of variable l, which is the only
way to access the fresh node. This operator was not present in Linda and is needed
to deal with node dynamism and node creation

During tuple evaluation, expressions are computed and logical localities are mapped
into physical ones. Evaluating a process implies substituting it with its closure, namely
the process along with the environment of the node where the evaluation is taking place.
Hence, a remarkable difference between out(P)@l and eval(P)@l is that out adds the
closure of P to the tuple space located at l, while eval sends P, not its closure, for
execution at l. This affects the evaluation of logical localities: when a process needs to
map a logical locality into a physical one, first its own allocation environment is used
(if it has one) and then, if the translation fails, the environment of the node where the
process runs is used. This means that a process delivered with an out will use a static
scoping strategy for logical localities while a process remotely spawned with an eval
will use a dynamic scoping strategy. Thus, for instance, in the case of out(P)@l, self
in P will refer to the originating site, while, in the case of eval(P)@l, self in P will
refer to the new execution site of P.

34 L. Bettini and R. De Nicola

The original KLAIM model of [DFP98] has been extended in [BLP02] to deal more
directly with open nets. The original formalism is enriched with explicit connectivity
actions and with a new kind of processes, that we called Node Coordinators, which
are the only ones allowed to perform privileged connectivity actions. This distinction
provides a fine-grain separation between the coordination level and the standard action
execution level. The new model of KLAIM, called hierarchical KLAIM, also permits
the programmer to decide explicitly whether the evaluation of tuples and processes has
to take place. Furthermore, in the hierarchical model, the allocation environment can be
modified dynamically with the primitive bind.

In the hierarchical model, any node plays both the role of computational environ-
ment (for processes and tuples), and a gateway, (for managing subnets of other nodes).
Nodes can act both as clients (belonging to a specific subnet) and as servers (taking
charge of, possibly private, subnets). Logical localities represent the names that client
nodes can specify when entering the subnet of a server node, and allocation environ-
ments, that can be dynamically updated with such information, actually represent dy-
namic tables mapping logical names (possibly not known in advance) into physical ad-
dresses; these mappings are allowed to change during the evolution. The client-server
relation among nodes smoothly leads to a hierarchical model, also because of the way
logical names are “resolved”: in order to find the mapping for a locality, allocation en-
vironments of nodes in this hierarchy are now inspected from the bottom upwards. This
resembles name resolution within DNS servers. We shall consider further this issue in
Section 8, where we will describe how node connectivity is managed in X-KLAIM.

We conclude this section with a description of the dining philosophers problem in
in KLAIM. We will have a node for each chopstick (ci) and a node for each philosopher
(pi). To indicate that the i−th chopstick is free we put the tuple (“chopstick”) at ci.
Philosophers at pi are described by the recursive processes below.

Pi =
think...
in(“chopstick”)@ci.
in(“chopstick”)@c(i+1)mod n.
eat...
out(“chopstick”)@ci.
out(“chopstick”)@c(i+1)mod n.
Pi

The full system is described by the following term, where the local tuple spaces of
a node is rendered by placing the relevant tuples after the name of the node.

c0 : :(“chopstick”) ‖ p0 : :P0 ‖
c1 : :(“chopstick”) ‖ p1 : :P1 ‖
c2 : :(“chopstick”) ‖ p2 : :P2 ‖
c3 : :(“chopstick”) ‖ p3 : :P3 ‖
c4 : :(“chopstick”) ‖ p4 : :P4 ‖
c5 : :(“chopstick”) ‖ p5 : :P5

Obviously the solution presented above is prone to deadlock and tickets should be
used to limit the number of philosophers attempting to grab a chopstick. This could be

Mobile Distributed Programming in X-KLAIM 35

modeled by adding a locality T (table) where tickets are placed and philosophers need
to get a ticket from the table before attempting to get the forks and to put it back after
eating.

4 Programming Examples

In this section we will show that a few programming paradigms can be naturally mod-
eled by means of the KLAIM based approach. We shall also consider a simple program-
ming example that make evident the expressive power of KLAIM. We will also use the
process algebra operators | and + for parallel composition of processes and nondeter-
ministic choice [Mil89].

Programming Paradigms

Mobile Applications are distributed applications whose distinctive feature is the ex-
ploitation of “code mobility” [Tho97]. According to the classification proposed in
[CGPV97], we can single out three paradigms for mobile computing that are largely
used in network programming:

– Remote Evaluation. Any component of a distributed application can invoke services
from other components by transmitting both the data needed to perform the service
and the code that describes how to perform the service.

– Mobile Agent [Kna96, HCK94, Whi96]. A process (i.e., a program and an associ-
ated state of execution) on a given node of a network can migrate to a different node
where it continues its execution from the current state.

– Code On–Demand. A component of a distributed application running on a given
node, can dynamically download from a different component and link the code to
perform a given task.

Below, we shall show how these paradigms for code mobility can be rendered in KLAIM.
In the next section we shall also consider the issue of process mobility and discuss the
differences between weak, strong and full mobility.

Remote Evaluation. Suppose we want to require that server located at location l eval-
uates code P with values v1, . . . ,vn assigned to variables x1, . . . ,xn. We can use the in-
struction

out(in(!y1, . . . , !yn)@l.A〈y1, . . . ,yn〉,v1, . . . ,vn)@l

if we assume that A(x1, . . . ,xn)
de f
= P and that the server performs

in(!X , !x1, . . . , !xn)@self.out(x1, . . . ,xn)@self.X

or a similar actions.

Mobile Agents. Execution of process P at a remote location l can be implemented as

- eval(P)@l, if a dynamic scoping discipline for resolving location names is adopted,
- newloc(!u).out(P)@u.in(!X)@u.eval(X)@l, when it is needed to guarantee the

closure of P before moving it.

36 L. Bettini and R. De Nicola

Code On-demand. It is simply programmed by means of an instruction of the form,
read(!X)@l, that permits downloading a program code P stored in a tuple with one
field only (which contains P) from a (perhaps remote) location l.

Remote Procedure Calls

Also Remote Procedure Calls can be naturally modeled in KLAIM. We consider the
case of a caller process (caller) that sends a request to the callee (callee) and waits
for a response. The request, together with the name of the procedure and its actual
parameters, contains the caller’s private locality where the response has to be delivered.

caller = newloc(u). out(procid,e1, . . . ,en,u)@�callee.
in(!y1, . . . , !yk)@u. 〈next behavior〉.

Process callee waits for an invocation, executes the related procedure and sends back
the results using the locality, passed together with the service request.

callee = in(! pid, !x1, . . . , !xn, !u)@self.(callee |
〈 pid(x1, . . . ,xn)〉.out(r1, . . . ,rk)@u.nil).

When processes are allocated in a net, the local environment of caller assigns to the
locality �callee the site where callee is located. Hence, we have:

N = s1 : :{s1/self,s2/lcallee}caller ‖ s2 : :{s2/self}callee

A crucial role in this example is played by newloc(u) which permits a private data space
to be created and accessed only via the variable u.

A Dynamic Newsgatherer

Consider the following scenario. User P needs additional information on a piece of data
represented by item. Part of the behavior of P depends on this information. However,
there are some activities which are independent of it. P can look for the required in-
formation in a database distributed over the network. We assume that at each node of
the database reachable from �item contains either a tuple of the form (item,v), with the
desired information, or a tuple of the form (item, �next), with the information about the
next node to search for the additional information.

The user process P asks for the execution at �item (the starting point of the search,
which can be chosen according to the search key item) of the agent gatherer, which
dynamically travels between nodes looking for a tuple that contains information on
item. This agent takes as its parameters the research key item and a fresh locality u,
which provides the address of the user’s private tuple space where the result of the
search has to be placed. Once gatherer has been spawned, P splits its behavior into two
parallel components: one waits for the additional information and the other proceeds.
Thus, those activities that do not need the additional information are decoupled from
the search activity, which might be complex and expensive.

P = newloc(u).eval(gatherer(item,u))@�item.((in(!x)@u.P1)|P2)

Mobile Distributed Programming in X-KLAIM 37

Process gatherer can match two alternative tuples. The first one captures the addi-
tional information on item (e.g., the price). If this is found then it is placed at locality
u and gatherer terminates. The second tuple is used to obtain the address of the node
where the search has to be repeated.

gatherer(item,u) = read(item, !x)@self.out(x)@u.nil
+ read(item, !u′)@self.eval(gatherer(item,u))@u′.nil

Our assumption about the structure of the distributed database guarantees that gatherer
never deadlocks (because either the associated information or a location where the
search can be repeated certainly found), but it does not ensure that the search activ-
ity will terminate successfully: gatherer might loop indefinitely. This could happen if
its second tuple, the one with location information, always finds a match in the tu-
ple spaces.

5 The Programming Language X-KLAIM

X-KLAIM (eXtended KLAIM) is an experimental programming language specifically
designed to program distributed systems composed of several components interacting
through multiple tuple spaces and mobile code (possibly object-oriented). X-KLAIM

extends KLAIM with a high level syntax for processes: it provides variable declara-
tions, enriched operations, assignments, conditionals, sequential and iterative process
composition and object-oriented features based on mixin inheritance.

In the rest of the paper we will describe the syntax of X-KLAIM and provide some
programming examples. The language relies on the hierarchical model of KLAIM,
hinted in Section 3. Thus, it also provides all the primitives for explicitly dealing with
node connectivity. However, X-KLAIM still provides flat network functionalities; in the
first examples we present, we rely on a flat network topology, while hierarchical fea-
tures are introduced in Section 8. The flat model can be enabled by using passing to the
xklaim compiler the command line option -T 1; otherwise, by default, the compiler
will generate code with hierarchical model features.

Moreover, X-KLAIM provides object-oriented features, i.e., object-oriented code
mobility, structured via mixin-based inheritance, according to the philosophy of MOMI

[BBV02, BBV04]. The object-oriented features of X-KLAIM will not be described in
this paper (we refer to [Bet03]).

Syntax

X-KLAIM has a syntax that is quite similar to Pascal syntax; blocks of code are delim-
ited by begin end and the character ‘;’ is used as a separator for instructions and not as
a terminator. This implies that the code

begin instr1 ; instr2 end

is syntactically correct, while the following one is not:

begin instr1 ; instr2 ; end

38 L. Bettini and R. De Nicola

RecProcDefs ::= rec id formalparams procbody | rec id formalparams extern
| RecProcDefs ; RecProcDefs

formalParams ::= [] | [paramlist]
paramlist ::= id : type | ref id : type | paramlist , paramlist
procbody ::= declpart begin proc end
declpart ::= ε | declare decl
decl ::= const id := expression | locname id | var idlist : type | decl ; decl
idlist ::= id | idlist , idlist
proc ::= KAction | nil | id := expression | var id : type | proc ; proc

| if boolexp then proc else proc endif
| while boolexp do proc enddo
| forall Retrieve do proc enddo
| procCall | call id | (proc) | print exp

KAction ::= out(tuple)@id | eval(proc)@id | Retrieve | go@id | newloc(id)
Retrieve ::= Block | NonBlock
Block ::= in(tuple)@id | read(tuple)@id
NonBlock ::= inp(tuple)@id | readp(tuple)@id | Block within numexp
boolexp ::= NonBlock | standard bool exp
tuple ::= expression | proc | ! id | tuple , tuple
procCall ::= id (actuallist)
actuallist ::= ε | expression | proc | id | actuallist , actuallist
expression ::= ∗ expression | standard exp
id ::= string
type ::= int | str | loc | logloc | phyloc | process | ts | bool

Table 1. X-KLAIM process syntax. Syntax for other standard expressions is omitted

X-KLAIM is case-insensitive for keywords, but not for variable and process names.
Comments start with the symbol # and terminate at the end of the line. An X-KLAIM

program is made of some global process definitions and some node definitions.
The main computational unit in KLAIM and thus also in X-KLAIM is a process.

The syntax of X-KLAIM processes is shown in Table 1. A process is addressable in an
X-KLAIM program through its name, and can receive arguments and declare some local
variables. Arguments are passed to a process by value, unless ref is used for declaring
a formal parameter.

Variables and Localities

Local variables of processes are declared in the declare section of the process definition.
Standard base types are available (str, int, bool) as well as X-KLAIM typical types,
such as loc, logloc and phyloc for locality variables, process for process variables and
ts, i.e., tuple space, for implementing data structures by means of tuple spaces, e.g.,
lists, that can be accessed through standard tuple space operations.

A formal parameter has simply the form <name>:<type>. A variable (resp. a list
of variables with the same type) can be declared as follows:

var <name> : <type>
var <name 1>, ..., <name n> : <type>

Mobile Distributed Programming in X-KLAIM 39

The same style can be used to declare a variable in the process body. A variable declared
in the declare section is visible in the whole process body, while a variable declared in
the process body is visible only in the code block where it is declared.

Constant variables are declared without specifying the type, since this is automati-
cally inferred from their values:

const s := "foo" ; # a string constant
const b := true ; # a boolean constant
const i := 1971 ; # an integer constant

Logical locality constants are declared by using the type locname; the value of such a
constant is represented by the symbol name itself.

A locality variable can be initialized with a string that will correspond to its actual
value. Logical localities are basically names, while physical localities must have the
form <IP address>:<port>, so a physical locality variable has to be initialized with a
string corresponding to an Internet address. The type loc represents a generic locality,
without specifying whether it is logical or physical, while logloc (resp. phyloc) rep-
resents a logical (resp. physical locality). A simple form of subtyping is supplied for
locality variables in that

logloc <: loc phyloc <: loc

Here are some examples of locality variable manipulations:

var l : loc;
var output : logloc;
var server : phyloc;
output := "screen";
server := "192.168.1.10:9999";
l := output; # OK: a logical locality can be assigned to a locality
l := server; # OK: a physical locality can be assigned to a locality

Logical locality resolution depends on the network model used in the program: the
resolution takes place automatically in the flat model while, in the hierarchical model,
it has to be explicitly invoked by putting the operator ∗ in front of the locality that has
to be evaluated:

l := ∗output; # retrieve the physical locality associated to output
out(∗output)@self; # insert the physical locality associated to output

However logical localities used as “destination” are still evaluated automatically in both
network models, i.e., if the locality used after the @ is a logical one, it is first translated
to a physical locality.

Operations

Apart from standard KLAIM operations, X-KLAIM provides a non-blocking version
of the retrieval operations, namely readp and inp; these act like read and in, but, if
no matching tuple is found, they do not block the running process and simply return
false. Thus these operations can be used where a boolean expression is expected.

40 L. Bettini and R. De Nicola

if readp(!i, !j)@l and (not in("foo", !k)@self within 3000) then
out(i, j)@self

else
out(k)@self

endif

Listing 1. A more complex retrieval operation

Furthermore, a timeout (expressed in milliseconds) can be specified for in and read,
through the keyword within; the operation is then a boolean expression that can be
tested to determine whether the operation succeeded:

if in(!x, !y)@l within 2000 then
... success!

else
... timeout occurred

endif

Time-outs can be used when retrieving information for avoiding that processes block
due to network latency bandwidth or to absence of matching tuples.

These boolean expressions can be combined in order to execute more complex re-
trieval operations, as in the example in Listing 1: the if succeeds if a tuple matching (!i, ! j)
is present at l and no tuple matching ("foo", !k) is found at self within 3 seconds.

The compiler also performs some static analysis in order to check whether an iden-
tifier is initialized within a specific scope. The retrieval operations in X-KLAIM are
binders for the formal fields of their tuples in the sense that after such an operation
succeeded, the identifiers used as formal fields can be considered initialized. Thus, in
the example in Listing 1, the out(i, j)@self is correct, since in the then branch
both i and j are initialized; on the contrary out(k)@self is rejected, since the test of
the if statement may have failed because of the readp(!i, !j)@l; thus in the else
branch k may not be initialized. If or had been used, instead of and, in Listing 1, then
out(k)@self would have been correct in the else branch, while out(i, j)@self
would have been rejected in the then branch. The evaluation of boolean expressions in
X-KLAIM is lazy.

Iterations

It is often useful to iterate over all elements of a tuple space matching a specific tem-
plate. However, due to the inherent nondeterministic selection mechanism of pattern
matching a subsequent read (or readp) operation may repeatedly return the same tu-
ple, even if several other tuples match. Thus the following piece of code that aims at
copying to a different node all tuples matching (int,str) after incrementing the first
element is destined to fail

while readp(!i, !s)@self do
out(i + 1, s)@l

enddo

Mobile Distributed Programming in X-KLAIM 41

since it could end up in an infinite loop, always modifying the same tuple. Repeatedly
withdrawing such a tuple with inp does not solve the problem, since, in order not to
be destructive on the original site, it would force to reinsert the withdrawn tuple, thus
incurring in the same problem as above.

For this reason X-KLAIM provides the construct forall that can be used for iterating
actions through a tuple space by means of a specific template. Its syntax is:

forall Retrieve do
proc

enddo

We refer the reader to Table 1 for the syntax of “Retrieve”. The informal semantics of
this operation is that the loop body “proc” is executed each time a matching tuple is
available. Even duplicate tuples are repeatedly retrieved by the forall primitive; it is
however guaranteed that each tuple is retrieved only once. In Particular,

forall guarantees that, given a template, each matching tuple is retrieved only
once.

Thus, instead of the while-based code above we write:

forall readp(!i, !s)@self do
out(i + 1, s)@l

enddo

Now, if the tuple space contains three matching tuples (of which two are identical): (10,
"foo"), (10, "foo"), (20, "bar"), after the execution of the loop instruction the tuple
space at l will contain the tuples (11, "foo"), (11, "foo"), (21, "bar").

Notice however that the tuple space is not blocked when the execution of the forall
is started, thus this operation is not atomic: the set of tuples matching the template can
change before the command completes. A locked access to such tuples can be explicitly
programmed. Our version of forall is different from the one proposed in [BWA94] since
parallel processes are not created for each retrieved tuple (this would not be consistent
with the “iterating” nature of forall; a similar functionality could be easily achieved
by using eval in the loop body). Our forall is similar to the all variations of retrieval
operations in PLinda [AS92].

The forall primitive has a different semantics depending on the nature of the retrieval
operation: if a blocking action is used, then the process executing forall is blocked until
another (never retrieved) tuple becomes available; instead, when a nonblocking action
is used, the process exits from the forall loop and continues its execution.

Data structures can be implemented by means of the data type ts; a variable declared
with such type can be considered as a tuple space and can be accessed through standard
tuple space operations, apart from eval that would not make sense when applied to
variables of type ts. Furthermore newloc (see Section 8) has a different semantics when
applied to a variable of type ts: it empties the tuple space.

forall is then useful for iterating through such data structures; for instance the fol-
lowing piece of code transforms a list, stored in the variable list of type ts, containing
data of the form (str, int) into a list containing data of the form (int, str):

42 L. Bettini and R. De Nicola

declare
var s : str;
var i : int;
var list : ts;

...
forall inp(!s, !i)@list do
out(i, s)@list

enddo

Notice that we use the non-blocking version of in, otherwise the process would be
blocked when it finished iterating through the list.

Process Mobility

The operation eval(P)@l starts the process P on the node at locality l; P can be either a
process name (and its arguments):

eval(P("foo", 10))@l

or the code (i.e., the actions) of the process to be executed:

eval(in(!i)@self; out(i)@l2)@l

Processes can also be used as tuple fields, such as in the following code:

out(P("foo", 10), in(!i)@self; out(i)@l2)@l

However, in this case, these processes are not started automatically at l: they are simply
inserted in its tuple space. They can be retrieved (e.g., by another process executing at
l) and explicitly evaluated:

in(!P1, !P2)@self;
eval(P1)@self;
eval(P2)@self

Thus, basically, eval provides remote evaluation functionalities, while out can be used
to implement the code on-demand paradigm.

As for logical locality resolution, the network model used to compile and execute
X-KLAIM programs influences the evaluation of processes sent with out: if the flat
model is used, then the closure of the process is sent (as explained in Section 3 this
means that all the logical localities of the sent process are translated before the process
is sent, using the allocation environment of the starting node), while in the hierarchical
model the process is sent without the closure (i.e., without the allocation environment).
In the hierarchical model, if one wants to send the closure, he must prefix the process
with * just like for localities.

According to the requirements made on the run-time support, code mobility can be
classified as follows [CGPV97, HY98]:

– weak mobility: code coming from a different site can be dynamically linked;
– strong mobility: a thread can move its code and execution state to a different site

and resume its execution on arrival;

Mobile Distributed Programming in X-KLAIM 43

– full mobility: in addition to strong mobility, the whole state of the running program
is moved, and this includes all threads’ stacks, namespaces (e.g., I/O descriptors,
file-system names) and other resources, so that migration is completely transparent.

Full mobility can be considered orthogonal to mobile agents and requires a strong
support from the operating system layer. Strong mobility is the notion of mobility that
fits best in with the classical concept of mobile agent: the execution state of a migrating
agent is suspended, and its stack and program counter are sent to the destination site,
together with the relevant data; at the destination site, the stack of the agent is recon-
structed and the program counter is set appropriately, i.e., to the first instruction after
the migration action. Instead, weak mobility does not meet the intuitive idea of mobile
agent, because automatic resumption of execution thread is one of the main features of
mobile agents (it exalts their autonomy). X-KLAIM provides strong mobility by means
of the action go@l (this is obtained through a preprocessing transformation at compile
time, described in [BD01]) that makes an agent migrate to l and resume its execution
at l from the instruction following the migration action. Thus in the following piece of
code an agent retrieves a tuple from the local tuple space, then it migrates to the locality
l and inserts the retrieved tuple into the tuple space at locality l:

in(!i, !j)@self;
go@l;
out(i, j)@self

Input/Output

Also I/O operations in X-KLAIM are implemented as tuple space operations. For in-
stance the logical locality screen can be attached (mapped) to the output device. Hence,
operation out("foo\n")@screen corresponds to printing the string "foo\n" on the
screen. Similarly, the locality keyb can be attached to the input device, so that a process
can read what the user typed with a in(!s)@keyb. Further I/O devices, such as files,
printers, etc., can also be handled through the locality abstraction. An example of this
usage is shown in Section 9.

However, in order to make programming in X-KLAIM slightly easier, we also supply
the instruction print that, given a string, prints it to the standard output, followed by a
carriage return. String concatenation can be used to compose complex strings. Symbols
and constants that do not have type str are automatically converted by the compiler:

print "the value of i is " + i + ". Is it < 10? " + (i < 10)

Type casts are supplied by X-KLAIM but only in a safe way. Indeed they are only a
means for solving possible ambiguities. For instance the following instruction

out(inp(10)@self)@l

inserts the process inp(10)@self in the tuple space corresponding to l: since X-KLAIM

is a higher-order language, the action inp(10)@self is interpreted as a process made
only by such action. If on the contrary the programmer wants to actually insert the boolean
result of inp(10)@self, he can do that by performing an explicit cast to type bool:

out((bool) inp(10)@self)@l

44 L. Bettini and R. De Nicola

This way the program assumes the following semantics:

var b : bool;
b := inp(10)@self;
out(b)@l

Notice that every cast is checked by the compiler to verify that its validity; for instance
the instruction

out((bool) in(10)@self)@l

would be rejected by the compiler, because in does not return a boolean value.
Apart from the implicit cast to string used for expressions printed with print, the

compiler also performs other implicit cast when passing arguments to a process; thus,
if P is a process that receives a boolean and a process, the process call

P(inp(10)@self, inp(10)@self)

is automatically converted to

P((bool) inp(10)@self, inp(10)@self)

Nodes

A process can execute only on a node since in KLAIM nodes are the execution engines.
The syntax for defining a node in X-KLAIM is in Table 2. A node is defined by specify-
ing its name (id), its allocation environment, some options (described later) and a set of
processes running on it. An allocation environment contains the mapping from logical
localities to physical localities of the form

logical locality variable ∼ physical locality constant

thus it also implicitly declares the logical locality variables for all the processes defined
in the node. Processes defined in a node have the same syntax of Table 1 but they do not
have a name, since these processes are visible and accessible only from within the node
where they were defined and not in the whole program. Basically the processes defined
in a node correspond to the main entry point in languages such as Java and C.

NodeDefs ::= ε | nodes nodedefs endnodes
ProcDefs ::= ε | RecProcDefs
nodedefs ::= id :: { environment } nodeoptions nodeprocdefs

| nodedefs ; nodedefs
environment ::= ε | id ∼ id | environment , environment
nodeprocdefs ::= procbody | nodeprocdefs || nodeprocdefs
nodeoptions ::= class id | port num

Table 2. X-KLAIM node syntax

Mobile Distributed Programming in X-KLAIM 45

package Klava

Java
program

Java
program

X−Klaim
program X−Klaim

compiler

javac
compiler

Java
application Java

interpreter

Fig. 1. The framework for X-KLAIM

With the option class it is possible to specify the actual Java class that has to be
used for this node, and the option port can be used to specify the Internet port where
the node is listening. Notice that, together with the IP address of the computer where
the node will run, the port number defines the physical locality of the node.

Implementation

The implementation of X-KLAIM consists in the Java package KLAVA that provides
the run-time system for X-KLAIM operations, and a compiler that translates X-KLAIM

programs into Java programs that use KLAVA. The structure of such framework is de-
picted in Figure 1. Both X-KLAIM and KLAVA can be downloaded from http://
music.dsi.unifi.it.

KLAVA [BDP02] can be seen both as a middleware for X-KLAIM programs and
as a Java framework for programming according to the KLAIM paradigm. Thus, the
programmer can use X-KLAIM to write the high level parts of a mobile application and
can rely on KLAVA if he must write some customized low level parts in Java.

Java [AGH00] has been chosen as the implementation language because it supplies
a natural support for programming distributed applications with mobile code. Indeed,
Java supplies architectural independence, i.e., on-line portability [Car97], class libraries
for network programming, tools for synchronization, dynamic class loading and cus-
tomizable security mechanisms.

The code mobility issue is taken care by KLAVA in a transparent way. In KLAVA,
processes can be sent as part of a message and executed at the destination site, where
however their Java classes, i.e., their code, may be unknown. It is then necessary to make
such code available for execution at remote hosts. Instead of an on-demand approach
(where the code is requested to the server from which an agent is downloaded when it is
needed), we prefer to collect all the code that a process needs, before dispatching it. This
approach better complies with the mobile agents paradigm: during a migration, an agent
will bring all the information that it may need for later executions. Moreover, our choice
has the advantage of simplifying the handling of disconnected operations [PR98]: the
agent owner does not have to stay connected after sending the agent and can connect
later just to check whether his agent has terminated. This may not be possible with the
on-demand approach: the server that sent the process must always be on-line in order
to provide the classes needed by remote hosts.

Therefore, a process will be sent along with its class binary code, and with the class
code of all the objects the process uses. Obviously, only the code of user defined classes
has to be sent, as the other code (e.g. Java and KLAVA classes) is common to every
KLAVA application. This guarantees that classes belonging to java sub-packages are

46 L. Bettini and R. De Nicola

not loaded from other sources (especially, the network); this would be very dangerous,
since, in general, such classes have more access privileges.

All the nodes that are willing to accept remote processes (due to security issues, a
node may refuse accepting remote processes for execution) must have a custom class
loader: a NodeClassLoader supplied by the KLAVA package. When a process is re-
ceived from the network, before using it, the node adds the class binary data (received
along with the process) to its class loader’s table. During process execution, whenever
a class code is needed, if the class loader does not find the code in the local packages,
then it can find it in its own local table of class binary data.

The names of user defined classes are retrieved by means of class introspection (Java
Reflection API). Just before dispatching a process to a remote site, a recursive procedure
is called for collecting all classes that are used by the process when declaring: data
members, objects returned by or passed to a method/constructor, exceptions thrown
by methods, inner classes, the interfaces implemented by its class, the base class of
its class.

Due to security concerns Java does not allow dynamic inspection of byte code stack;
this makes impossible to save the execution state for later use. For this reason, KLAVA

can only permit weak mobility of agents that have to be restarted after the migration. On
the contrary, as shown in Section 4, X-KLAIM, by relying on a source level transfor-
mation [BD01], also provides strong mobility by means of go@l operation (the mobile
agent automatically resumes execution from the point after the migration).

Downloading code from the net exposes the executing machine to security risks,
since this code could execute dangerous operations that could damage the system or the
other executing processes. Klava provides a KlavaSecurityManager, which, if acti-
vated by the node, does not allow processes, downloaded from the net, or sent by remote
nodes, to execute operations on system resources (such as files, and system properties).

6 Hello World in X-KLAIM

Usually the first program ever written in a language is the famous “Hello World”. In
this section we present several versions of the “Hello World” program in X-KLAIM. In
particular, we shall present some local and some distributed variants.

Local Versions

This is the most direct way of writing “Hello World” in X-KLAIM:

HelloWorld.xklaim
nodes
hello world :: {}
begin
print "Hello World!"

end
endnodes

After compiling the file HelloWorld.xklaim with the X-KLAIM compiler,

xklaim HelloWorld.xklaim

Mobile Distributed Programming in X-KLAIM 47

and after compiling the resulting generated file HelloWorld.java with the Java com-
piler,

javac HelloWorld.java

the program can be started with the command

java HelloWorld

This will start the node hello_world listening on the standard port (9999) and the
process printing "Hello World" is started on this node.

Notice: You must have the Java package KLAVA installed in order to compile the Java
code generated by the compiler and then to run the Java programs.

An alternative way of writing the same program is to define a process for printing
the string, and then run that process from within the node:

HelloWorld2.xklaim
rec HelloProc[]
begin

print "Hello World!"

end

nodes
hello world2 :: {}

begin
eval(HelloProc())@self

end
endnodes

By compiling this program you will notice that the compiler generates a Java program
with the same name of the original source (e.g., containing the class HelloWorld2 with
the main method), and a separate Java source for each process (e.g., HelloProc.java).
Of course you have to compile all the Java sources generated by the compiler in order
to run the program.

This way the code of the process HelloProc can be reused by other nodes in the
same program. Indeed, it can also be used by other programs: they can import its im-
plementation as follows

rec HelloProc[] extern

nodes
hello world3::{}
begin
eval(HelloProc())@self

end
endnodes

48 L. Bettini and R. De Nicola

Of course, the HelloProc.java must have already been generated by the xklaim
compiler. Notice, however, that in this case the xklaim compiler will not actually check
that a process HelloProc is actually defined in some other source. If this is not the case,
when you compile the corresponding generated Java sources, you may get an error
by the Java compiler if such a process cannot be found anywhere. Thus, the extern
keyword is exactly the same as in the language C.

Distributed Versions

A distributed version of the “Hello World” program can be easily built in X-KLAIM.
We can write the sender and the receiver into two separate files:

HelloSender.xklaim, compile it with option −T 1
rec HelloSenderProc[dest : loc]
begin
out("Hello World!")@dest

end

nodes
hello sender::{receiver ˜ localhost:11000}
port 10000
begin

eval(HelloSenderProc(receiver))@self

end
endnodes

The sender node maps the logical locality receiver to the physical locality
localhost:11000, and passes the logical locality to the sender process that simply
puts a tuple containing the string "Hello World" in the tuple space of the remote
node1. Notice that this node also specifies its physical locality, by declaring its port. Fi-
nally, in order to keep the example simple, we rely on the flat network model of KLAIM,
where all nodes belong to the same net, and they are all at the same level. For this rea-
son, we have to pass the option -T 1 to the xklaim compiler when we compile this
source:

xklaim HelloSender.xklaim -T 1

The receiver node, that is executing on localhost listening on port 11000, simply
waits for a tuple made of a string and prints the received message (again use the option
-T 1):

HelloReceiver.xklaim, compile it with option −T 1
nodes
hello receiver::{}
port 11000

1 In this simple example, we assume that all nodes run on the same machine — for this reason
we use the localhost address. Of course, you can experiment by running the two nodes on
different machines and in that case you have to substitute localhost with the correct IP of
the receiver node

Mobile Distributed Programming in X-KLAIM 49

declare
var msg : str

begin
in(!msg)@self;
print "received: " + msg
end
endnodes

Now, after compiling all the programs (and also the generated Java sources), you
cannot simply run the two programs, since the two nodes expect to connect to a net
server (we are using the flat model in these examples). Thus, you must first run the
KLAVA net server (the port number is optional, by default it is 9999):

java Klava.Net 9999

and then run the receiver node, by specifying the address and the port number of the net
server:

java HelloReceiver localhost 9999

and when the receiver node is connected to the net server, you can start the sender:

java HelloSender localhost 9999

Since the two nodes are connected to the same net server, they will be able to commu-
nicate.

Another possibility is to send the HelloSenderProc process directly to the receiver
site so that it can out the tuple locally:

HelloSender2.xklaim, compile it with option −T 1
rec HelloSenderProc[dest : loc] extern

nodes
hello sender2::{receiver ˜ localhost:11000}
port 10000
begin

eval(HelloSenderProc(self))@receiver
end

endnodes

Notice that the process that outs the tuple is just the same as before (since it is param-
eterized over the destination locality), and the sender passes self as the destination
locality to the process and spawns the process for execution at the receiver site. Further
mobility examples are shown in Section 7.

7 Mobility Examples

In this section we show a few programming examples taking advantage of process mo-
bility, implemented in X-KLAIM.

50 L. Bettini and R. De Nicola

rec NewsGatherer[item : str, itemVal : str, finish : bool, retLoc : loc]
declare
var itemVal : str ;
var nextLoc : loc

begin
if not finish then
if read(item, !itemVal)@self within 10000 then
eval(NewsGatherer(item, itemVal, true, retLoc))@retLoc

else
if readp(item, !nextLoc)@self then

eval(NewsGatherer(item, "", false, retLoc))@nextLoc
else

eval(NewsGatherer(item, "", true, retLoc))@retLoc
endif

endif
else
if itemVal != "" then print "found " + itemVal
else print "search failed" endif

endif
end

Listing 2. X-KLAIM implementation of a news gatherer using eval

News Gathering

The first example is a news gatherer, that relies on mobile agents for retrieving infor-
mation on remote sites (it is the implementation in X-KLAIM of the KLAIM program
shown in Section 4). We assume that some data are distributed over the nodes of an
X-KLAIM net and that each node either contains the information we are searching for,
or, possibly, the locality of the next node to visit in the net.

The agent NewsGatherer first tries to read a tuple containing the information we
are looking for, if such a tuple is found, the agent returns the result back home; if no
matching tuple is found within 10 seconds, the agent tests whether a link to the next
node to visit is present at the current node; if such a link is found the agent migrates
there and continues the search, otherwise it reports the failure back home.

The first implementation of such an agent is shown in Listing 2 and employs eval
for spawning an instance of the agent to a remote site. Since eval implements weak
mobility, it is necessary to explicitly spawn a new copy to the new site, passing all
the parameters representing the execution state of the agent: the boolean finish says
whether the agent has visited all the possible sites, and the search is considered success-
ful if itemVal is not empty.

Notice that the source of the agent is a little bit complex, since it might not be clear,
at first glance, what the agent is supposed to do. One can use strong mobility in order
to make the source clearer. The implementation of the agent exploiting strong mobility
(by means of the migration operation go) is reported in Listing 3.

Information Retrieval

The next example is still an autonomous information retrieval agent in the context of a
virtual market place: suppose that someone wants to buy a specific product at a mar-

Mobile Distributed Programming in X-KLAIM 51

rec NewsGatherer[item : str, retLoc : loc]
declare
var itemVal : str ;
var nextLoc : loc ;
var again : bool

begin
again := true;
while again do
if read(item, !itemVal)@self within 10000 then
go@retLoc;
print "found " + itemVal;
again := false;

else
if readp(item, !nextLoc)@self then

go@nextLoc
else

go@retLoc;
print "search failed";
again := false

endif
endif

enddo
end

Listing 3. X-KLAIM implementation of a news gatherer using strong mobility

ket made of geographically distributed shops. To decide at which shop to buy, she/he
activates a migrating agent which is programmed to find and return the name of the
closest shop (i.e., the shop within the chosen area, determined by a maximal distance
parameter) with the lowest price. The implementation of the agent MarketPlaceAgent
is shown in Listing 4.

The MarketPlaceAgent takes as parameters the product name, the maximal dis-
tance and the locality where the result of the search must be returned. The agent is
sent (by means of an eval not shown here) for execution at the node containing the
marketplace directory, where it asks for the list of the shops in the selected shopping
area. Then, MarketPlaceAgent migrates to the first shop in the list. At each shop,
MarketPlaceAgent checks the price of the wanted product, possibly updating the in-
formation about the lowest price and the shop that offers it, and migrates to the next
shop in the list. If there are no more shops to visit, MarketPlaceAgent sends the result
of the search back to the locality received as parameter. The list of nodes to visit is
stored in a list (implemented through a ts) and forall is used for iterating over this list.

Screenshot 1 shows a client that performs some searches through the
MarketPlaceAgent in two shops. In this example there are two shops affiliated to
the market place: Shop1 at physical locality 127.0.0.1:11000 with a distance of 3,
and Shop2 at physical locality 127.0.0.1:11005 with a distance of 5; this informa-
tion is shown in the window of the market place directory (up left). The client sends
the agent searching for a camera within a distance of 10, so the market place directory
provides the agent with a list made of the localities of the two shops, and after visiting
both, the agent reports home that the first shops sells the searched item at the lower cost.

52 L. Bettini and R. De Nicola

rec MarketPlaceAgent[ProductMake : str, retLoc : loc, distance : int]
declare

var shopList : TS ;
var nextShop, CurrentShop, thisShop : loc ;
var CurrentPrice, newCost : int ;
locname screen

begin
out("cshop", distance)@self; # ask for a list of shops within a distance
in("cshop", !shopList)@self;
out("retrieved list: ", shopList)@screen;
CurrentPrice := 0 ;
CurrentShop := self ;
forall inp(! nextShop)@shopList do # while there are shops to visit
thisShop := nextShop ;
go@nextShop ; # migrate to the next shop ;
out("AgentClient: searching for ", ProductMake)@screen ;
if read(ProductMake, ! newCost)@self within 10000 then

if (CurrentPrice = 0 OR newCost < CurrentPrice) then
CurrentPrice := newCost; # update the best price
CurrentShop := thisShop

endif
endif

enddo ;
out(ProductMake, CurrentShop, CurrentPrice)@retLoc # OK, let’s send the results

end

Listing 4. X-KLAIM implementation of an agent visiting shops of a virtual market place search-
ing for an item with the lowest price

Screenshot 1. The market place directory (up left), the market client (down left) and two shops
of the virtual market place

Mobile Distributed Programming in X-KLAIM 53

The second query has basically the same parameters but the agent has to search for a
radio and this time the second shop sells it at the lower price. Then it still searches for
a radio but within a closer distance (e.g., 4) and this time the second shop is not even
visited (since its distance is 5, so the market place directory does not put it into the list
communicated to the agent). Finally a cd is searched for (within a wider distance) and
when visiting the second shop a timeout is raised, since that shop does not sell that item.

Load Balancing

We conclude this section by presenting an example that uses the remote evaluation
paradigm, thus, the code does not to autonomously migrate: it is moved by another pro-
cess. This example implements a load balancing system that dynamically redistributes
mobile code among several processors: we suppose that remote clients send processes
for execution to a server node that distributes the received processes among a group of
processors by using, each time, the (estimated) idlest one. Each processor sends a num-
ber of “credits” to the server (this number corresponds to the processor availability to
perform computations on behalf of the server); the server stores the number of credits
in a database and, when needed, it chooses the processor with the highest number of
credits and decreases this number.

When a processor receives a process, it immediately starts executing the process (in
a parallel thread) and sends a credit back to the server. Indeed, the system is based on
the heuristic that if a processor is busy, it cannot send a credit back, or at least it does
not send a credit immediately (this is also known as Leaky Bucket Of Credits pattern
[ACG+96]).

rec DeliverProcess[ProcessorDB : ts]
declare
var P : process ;
var HighestCredit, Credits : int ;
var Processor, HighestProcessor : loc

begin
while (true) do
in(!P)@self ; # wait for a process
HighestCredit := 0 ;
forall readp(!Processor, !Credits)@ProcessorDB do
if (Credits > HighestCredit) then

HighestCredit := Credits ;
HighestProcessor := Processor

endif
enddo ;
out(P)@HighestProcessor ;
update its credits
in(HighestProcessor, HighestCredit)@ProcessorDB ;
out(HighestProcessor, HighestCredit − 1)@ProcessorDB

enddo
end

rec ReceiveProcess[server : loc]
declare
var P : process ;
locname screen

begin
while (true) do
in(!P)@self ;
eval(P)@self ;
out("SERVER", "CREDIT",

self)@server
enddo

end

Listing 5. Load balancing: (left) the server receives a process and dispatches it to the idlest
processor; (right) the processor node receives a process and executes it locally and sends a credit
back to the server

54 L. Bettini and R. De Nicola

This example is implemented by the code fragment in Listing 5 that shows the server
that dispatches the received process to the idlest processor (left) and the processor that
receives a process for execution from the server and sends a credit back to it. The code
presented here is simplified in order to concentrate on the code mobility related parts
(e.g., it does not handle cases such as all credits are exhausted for all processors). Notice
that processes are exchanged by means of out and in. Since in the hierarchical mode
processes are not automatically “closed” when sent with an out, then when a process is
executed in a processor it will actually use the local resources.

The overall architecture of this load balancing system is based on a push model, in
that the server delivers the processes to be executed to a chosen processor node. An
alternative implementation could be based on a pull model: a processor node, when
idle, asks the server for a process to be executed. This architecture can be employed to
develop systems similar to SETI@home [KWA+01] that uses Internet-connected com-
puters in the Search for Extraterrestrial Intelligence (SETI): users that want to help
the project can install this software that downloads data to be analyzed from the server
when the computer is idle (for instance when the screen saver starts).

8 Node Connectivity in X-KLAIM

X-KLAIM provides all the primitives for explicitly dealing with node connectivity (see
Section 3). Consistently with the hierarchical model of KLAIM such actions can be
performed only by node coordinators. The syntax of node coordinators is shown in
Table 3, and is basically the same of standard X-KLAIM processes (Table 1) apart from
the new privileged actions. We briefly comment these new actions:

– login(loc), where loc is an expression of type loc, logs the node where the node
coordinator is executing at the node at locality loc; logout(loc) logs the node out
from the net managed by the node at locality loc. login can be used as a boolean
expression in that it returns true if the login succeeds and false otherwise.

NodeCoordinator ::= rec NodeCoordDef
NodeCoordDef ::= nodecoord id formalparams declpart nodecoordbody

| nodecoord id formalparams extern
nodecoordbody ::= begin nodecoordactions end
nodecoordaction ::= standard process action | login(id) | logout(id)

| accept(id) | disconnected(id) | disconnected(id , id)
| subscribe(id , id) | unsubscribe(id , id)
| register(id , id) | unregister(id)
| newloc(id) | newloc(id , nodecoordactions)
| newloc(id , nodecoordactions , num , classname)
| bind(id , id) | unbind(id)
| dirconnect(id) | acceptconn(id)

Table 3. X-KLAIM node coordinator syntax. This syntax relies on standard process syntax shown
in Table 1

Mobile Distributed Programming in X-KLAIM 55

rec nodecoord SimpleLogin[server : loc]
begin
print "try to login to " +

server + "...";
if login(server) then
print "login successful";
out("logged", true)@self

else
print "login failed!"

endif
end

rec nodecoord SimpleLogout[server : loc]
begin
in("logged", true)@self;
print "logging off from " +

server + "...";
logout(server);
print "logged off."

end

rec nodecoord SimpleAccept[]
declare
var client : phyloc

begin
print "waiting for clients...";
accept(client);
print "client " + client + " logged in"

end

rec nodecoord SimpleDisconnected[]
declare
var client : phyloc

begin
print "waiting for disconnections...";
disconnected(client);
print "client " + client +

" disconnected."
end

Listing 6. An example showing login and logout (left) and the corresponding accept and dis-
connected

– accept(l) is the complementary action of login and indeed, the two actions have to
synchronize in order to succeed; thus a node coordinator on the server node (the
one at which other nodes want to log) has to execute accept. This action initializes
the variable l to the physical locality of the node that is logging. disconnected(l)
notifies that a node has disconnected from the current node; the physical locality
of such node is stored in the variable l. disconnected also catches connection fail-
ures. Notice that both accept and disconnected are blocking in that they block
the running process until the event takes place. Instead, logout does not have to
synchronize with disconnected.

An example of these four operations is shown in Listing 6, where the node coor-
dinators executing on the client are presented on the left, and the complementary ones
executing on the server are presented on the right. Notice that the process that executes
the login communicates with the one that has to execute the logout by using a tuple.
accept and disconnected are initializers for the corresponding variables.

– subscribe(loc, logloc) is similar to login, but it also permits specifying the logical
locality (logloc is an expression of type logloc) with which a node wants to become
part of the net coordinated by the node at locality loc; this request can fail also
because another node has already subscribed with the same logical locality at the
same server. unsubscribe(loc, logloc) performs the opposite operation.

– register(pl, ll), where pl is a physical locality variable and ll is a logical locality
variable, is the complementary action of subscribe that has to be performed on the
server; if the subscription succeeds pl and ll will respectively contain the physical
and the logical locality of the subscribed node. The association pl ∼ ll is automat-
ically added to the allocation environment of the server. unregister(pl, ll) records

56 L. Bettini and R. De Nicola

rec nodecoord SimpleSubscribe[server : phyloc, name : logloc]
begin

print "try to subscribe at " + server +
" as " + name + "...";

if subscribe(server, name) then
print "subscribe successful";
out("subscribed", true)@self

else
print "subscribe failed!"

endif
end

rec nodecoord SimpleUnsubscribe[server : phyloc, name : logloc]
begin

in("subscribed", true)@self;
print "now unsubscribing from " + server +
" as " + name + "...";

unsubscribe(server, name);
print "unsubscribed."

end

rec nodecoord SimpleRegister[]
declare

var clientloc : logloc;
var client : phyloc

begin
print "waiting for clients to subscribe...";
if register(client, clientloc) then

print "client " + clientloc + "~" +
client + " subscribed"

else
print "client failed to subscribe"

endif
end

rec nodecoord SimpleUnregister[]
declare

var client : logloc
begin

print "waiting for unsubscription...";
unregister(client);
print "client " + client + " unsubscribed."

end

Listing 7. An example showing subscribe and unsubscribe (left) and the corresponding register
and unregister

the unsubscriptions. Notice that an alternative version of disconnected, namely
disconnected(pl, ll) is supplied, in order to detect lost connections with nodes, that
also specifies the logical locality with which a node was subscribed. As the other
disconnected explained above, this action is more powerful in that it is able to
catch also connections brutally closed without an unsubscribe. Let us observe that
disconnected catches also the events of unregister so if program uses both, it is up
to the programmer to coordinate the two notification actions (an example of such a
scenario is shown in Section 9).

An example using these actions is presented in Listing 7; the processes are basically
similar to those presented in Listing 6, but they also deal with logical localities.

bind(logloc, phyloc) allows to dynamically modify the allocation environment of
the current node: it adds the mapping logloc ∼ phyloc. On the contrary, unbind(logloc)

Mobile Distributed Programming in X-KLAIM 57

removes the mapping associated to the logical locality logloc. These two operations
privileged and only node coordinators can execute them.

In this version of X-KLAIM newloc has become a privileged action and is supplied
in three forms in order to make programming easier: apart from the standard form that
only takes a locality variable, where the physical locality of the new created node is
stored, also the form newloc(l, nodecoordinator) is provided. Since newloc does not
automatically logs the new created node in the net of the creating node, this second
form allows to install a node coordinator in the new node that can perform this action
(or other privileged actions).

Notice that this is the only way of installing a node coordinator on another node:
due to security reasons, node coordinators cannot migrate, and cannot be part of a tu-
ple. In order to provide better programmability, this rule is slightly relaxed: a node
coordinator can perform the eval of a node coordinator, provided that the destination is
self.

Finally the third form of newloc takes two additional arguments: the port number
where the new node is going to be listening (and this also determines its physical lo-

rec nodecoord SimpleDirConn[peer : loc]
declare

var test : str
begin

print "establishing direct connection to " +
peer;

if dirconnect(peer) then
print "established";
out("TEST")@peer;
in(!test)@peer;
print "sent and receive " + test

else
print "direct connection to " +

peer + " failed."
endif

end
;

rec nodecoord SimpleAcceptConn[]
declare

var peer : phyloc
begin

print "waiting for direct connections...";
acceptconn(peer);
print "accepted direct connection from " + peer

end

nodes
mandirconnpeer2 :: {}
port 11000
class "NetNode"
start
declare

var peer : phyloc
begin

eval(SimpleAcceptConn())@self;
peer := "127.0.0.1:9999";
eval(SimpleDirConn(peer))@self

end
endnodes

Listing 8. An example showing dirconnect and acceptconn for establishing a peer to peer direct
communication

58 L. Bettini and R. De Nicola

cality, since the IP address will be the same of the creator node), and the (Java) class
of the new node. Since I/O devices can be abstracted into nodes, this form of newloc
enables to construct, for instance, the graphical interface of a node, made up of several
I/O sub-nodes. For an example, see Section 9, where some I/O logical localities are
used as interfaces for text areas, and input text boxes and lists.

In this scenario communications among nodes belonging to the same subnet take
place, through the gateway node. In case of firewalls or network restrictions the access
to a remote node may be permitted only through a server. For instance, an applet can
only open a network connection towards the computer it has been downloaded from. If
on this computer there is a NetNode running that is willing to act as a gateway, the ap-
plet is still able to indirectly communicate with all the nodes and, possibly, with applets
that are part of that net managed by that gateway. In this sense, a NetNode gateway
allows nodes to communicate even if they belong to different restricted domains. How-
ever, when there are no network restrictions, direct connections can still be established
in order to use a direct (probably faster) communication between nodes of the same, or
different, subnet.

In X-KLAIM direct connections can be dealt with explicitly, so we provide the com-
plementary privileged action dirconnect(loc) and acceptconn(l) that allow to create a
unidirectional direct communication channel. Thus if a node n1 establishes a direct con-
nection with the node n2 every time n1 sends a message to n2 it will do this directly,
i.e., without passing through a possible common server. This situation is not symmet-
ric since the direct connection is unidirectional. Should one want a bidirectional peer
to peer communication, this has to be programmed explicitly so that upon accepting a
direct connection from a node, also the other way direction is established.

rec nodecoord SimpleAcceptConnAndConnect[]
declare

var peer : phyloc
begin

print "waiting for direct connections...";
acceptconn(peer);
print "accepted direct connection from "
+ peer;

print "now connecting to " + peer;
if dirconnect(peer) then
print "established"

else
print "direct connection to " +

peer + " failed."
endif

end

nodes
mandirconnpeer1 :: {}
class "NetNode"
start
begin

eval(SimpleAcceptConnAndConnect())@self
end

endnodes

Listing 9. An example showing dirconnect and acceptconn for establishing a peer to peer direct
communication

Mobile Distributed Programming in X-KLAIM 59

An example is presented in Listing 8 and 9; here also the node definitions are shown
in order to clarify the scenario: mandirconnpeer2 (Listing 8) wants to engage a peer
to peer communication with the node at locality 127.0.0.1:9999, thus, it executes a
node coordinator for establishing the direct connection, and also executes a node coor-
dinator for accepting the corresponding direct connection request (from the other peer).
The other peer mandirconnpeer1 (Listing 9) executes the complementary protocol by
running a node coordinator that first accepts a direct connection and then establishes a
direct connection to the same node.

The node that first tries to establish the direct connection (mandirconnpeer2 in
this example) should execute the dirconnect and acceptconn in two parallel processes:
if it executed the two actions in sequence, the acceptconn would not be guaranteed to
start before the other peer started its request. This would probably lead to a deadlock.
The other peer (mandirconnpeer1 in this example), instead, can safely execute the
complementary acceptconn and dirconnect in sequence.

9 A Chat System with Connectivity Actions

In this section we present the implementation in X-KLAIM of a chat system. The chat
system we present in this section is simplified, but it implements the basic features that
are present in several chat systems. The system consists of a ChatServer and many
ChatClients.

The system is dynamic because new clients can enter the chat and existing clients
may disconnect. The server represents the gateway through which the clients can com-
municate, and the clients logs in the chat server by specifying their “nickname”, rep-
resented here by a logical locality. A client that wants to enter the chat must subscribe
at the chat server. The server must keep track of all the registered clients and, when a
client sends a message, the server has to deliver the message to every connected client.
If the message is a private one, it will be delivered only to the clients in the list specified
along with the message.

The Chat Server

When a new client issues a subscription request, the server accepts it only if there is no
other client with the same nickname, and in case the access is granted, every client is
notified about the new client; moreover the new client is also provided with the list of the
clients currently in the chat (Listing 10). The server keeps a database of all connected
clients in a variable usersDB of type ts where there is a tuple of the shape (nickname,
locality) for each client, where nickname is a logical locality and locality is a
physical one. Notice that all the processes running on the chat server share this database.

The server uses two (node coordinator) processes for intercepting clients’ discon-
nections: HandleUnregister and HandleDisconnected. The second one would be
useless if the network communications are reliable (i.e., no communication suddenly
crashes without further notice); however, this assumption may be too strong in a real-
istic scenario. Thus HandleDisconnected intercepts also this kind of disconnections.
As we said above the disconnected action returns even after an ordinary unsubscrip-

60 L. Bettini and R. De Nicola

rec nodecoord HandleLogin[usersDB : ts]
declare

var nickname : logloc ;
var client : phyloc ;
locname users, screen, server

begin
while (true) do
if register(client, nickname) then
out(nickname, client)@usersDB ;
out(true)@client ;
SendUserList(client, usersDB) ;
out((str)nickname)@users ;
out("Entered Chat : ")@screen ;
out(nickname, client)@screen ;
BroadCast("USER", "ENTER",

nickname, server, usersDB)
endif

enddo
end

rec SendUserList[newEnter : phyloc, usersDB : ts]
declare

var nickname : logloc ;
var userLoc : phyloc ;
var userList : ts

begin
newloc(userList) ;
forall readp(!nickname, !userLoc)@usersDB do
if (userLoc != newEnter) then
out(nickname)@userList

endif
enddo ;
out(userList)@newEnter

end

rec nodecoord HandleDisconnected[usersDB : ts]
declare

var nickname : logloc ;
var client : phyloc ;
locname screen

begin
while (true) do
disconnected(client, nickname);
out("disconnected: ", nickname, client)@screen;
RemoveClient(nickname, usersDB)

enddo
end

rec nodecoord HandleUnregister[usersDB : ts]
declare

var nickname : logloc ;
locname screen

begin
while (true) do
unregister(nickname);
out("unsubscription: ", nickname)@screen;
RemoveClient(nickname, usersDB)

enddo
end

rec RemoveClient[nickname : logloc, usersDB : ts]
declare

var client : phyloc ;
locname screen, users, server

begin
if inp(nickname, !client)@usersDB and

inp((str)nickname)@users then
out("Left Chat : ")@screen ;
out(nickname, client)@screen ;
BroadCast("USER", "LEAVE",

nickname, server, usersDB)
endif

end

Listing 10. Node coordinators of the chat server dealing with clients’ subscriptions

tion, so the process RemoveClient has to further check whether a client has already
been removed from the database.

The broadcasting of messages to clients is managed by two processes running on
the ChatServer node: BroadCast and BroadCastTo (Listing 11): the former sends
a message to all connected clients while the latter sends a message only to the clients
specified in the list to. This second version is useful when delivering personal mes-
sages.

All messages have the following tuple shape:

(communication_type, message_type, message, from)

where communication_type and message_type specify the type of message (e.g.,
the values "USER" together with "ENTER" indicate that a user entered the chat, while
"MESSAGE" and "ALL" indicate a chat message that is destined to every client). message
is the content of the message (e.g., the nickname of the user that entered the chat or the
body of a chat message) and from is the nickname (logical locality) of the client that
originated the message.

Mobile Distributed Programming in X-KLAIM 61

rec HandleMessage[usersDB : ts]
declare

var message : str ;
var sender : logloc ;
var from : phyloc

begin
while (true) do
in("MESSAGE", !message, !from)@self ;
if readp(!sender, from)@usersDB then

BroadCast("MESSAGE", "ALL",
message, sender, usersDB)

endif # ignore errors
enddo

end

rec HandlePersonal[usersDB : ts]
declare

var message : str ;
var sender : logloc ;
var from : phyloc ;
var to : ts

begin
while (true) do
in("PERSONAL", !message, !to, !from)@self ;
if readp(!sender, from)@usersDB then

BroadCastTo("MESSAGE", "PERSONAL",
message, to, sender, usersDB)

endif
enddo

end

rec BroadCast[communication type : str, message type : str,
message : str, from : logloc, usersDB : ts]

declare
var nickname : logloc ;
var user : phyloc

begin
forall readp(!nickname, !user)@usersDB do
out(communication type, message type,

message, from)@user
enddo

end

rec BroadCastTo[communication type : str, message type : str,
message : str, to : ts, from : logloc, usersDB : ts]

declare
var nickname : str ;
var user : phyloc

begin
forall inp(!nickname)@to do
recipients are specified as strings in the ”to” list
so we have to convert them first
if readp((logloc) nickname, !user)@usersDB then

out(communication type, message type,
message, from)@user

endif
enddo

end

Listing 11. Processes on the server dealing with message dispatching

Messages are received by the chat server by means of two processes HandleMessage
and HandlePersonal (respectively for standard chat messages and for personal mes-
sages) also shown in Listing 11. When a client wants to send a personal message it has
to specify also a list (a ts tuple field) containing the nicknames of the clients it is des-
tined to). These processes are responsible for delivering a message to all the recipient
clients.

The Chat Client

A chat client executes two processes for handling messages dispatched by the server
(Listing 12): HandleMessages takes care of processing chat messages and
HandleServerMessages handles server messages informing of new clients joining
the chat or existing clients leaving (the list of connected clients is updated accordingly).
This information is printed on the screen of the client (attached to the locality screen).

The user can insert messages for the server (i.e., commands for entering and ex-
iting from the chat) and standard chat messages in two text fields that are attached,
respectively, to the localities serverKeyb and messageKeyb For each of these
localities there is a process, respectively HandleServerKeyboard and
HandleMessageKeyboard (also in Listing 12) that read the input of the user and com-
municate with the server. When HandleServerKeyboard reads a tuple of the shape
("ENTER", nickname) it tries to subscribe at the chat server with that specific nick-
name. On the contrary, if the tuple contains "LEAVE" it unsubscribes.

.

62 L. Bettini and R. De Nicola

rec HandleMessages[]
declare

locname screen ;
const standard message := "MESSAGE";
var message, message type : str ;
var from : logloc

begin
while (true) do
in(standard message, !message type,

!message, !from)@self ;
if message type = "PERSONAL" then

out("PERSONAL ")@screen
endif;
out("(")@screen ;
out((str)from)@screen ;
out(") ")@screen ;
out(message)@screen ; out("\n")@screen

enddo
end

rec HandleServerMessages[]
declare

locname screen, usersList ;
const user message := "USER" ;
var command, nickname : str;
var from : logloc

begin
while (true) do
in(user message, !command,

!nickname, !from)@self ;
if command = "ENTER" then

out(nickname)@screen ;
out(" entered chat\n")@screen ;
if not readp(nickname)@usersList then
out(nickname)@usersList

endif
else

if command = "LEAVE" then
out(nickname)@screen ;
out(" left chat\n")@screen ;
inp(nickname)@usersList
ignore non existing names

endif
endif

enddo
end

rec nodecoord HandleServerKeyboard[]
declare

locname server, screen, serverKeyb, usersList;
var command, nick : str ;
var nickname : logloc ;
var response : bool ;
var chat server : phyloc ;
var userList : ts

begin
chat server := ∗server;
while (true) do
in(!command, !nick)@serverKeyb ;
if (command != "ENTER" and command != "LEAVE") then

out("Unknown command: ")@screen ;
out(command)@screen ;
out("\n")@screen

else
nick was entered as a string
nickname := (logloc) nick;
if command = "ENTER" then
if subscribe(chat server, nickname) then

out("Succeeded command: ")@screen ;
in(!userList)@self ;
UpdateUserList(userList)

else
out("Failed command: ")@screen

endif
else # it is a LEAVE
unsubscribe(chat server, nickname) ;
out("command", "removeAll")@usersList

endif ;
out(command, nickname)@screen

endif
enddo

end

rec HandleMessageKeyboard[]
declare

const ID := "messageKeyboard" ;
var message : str ;
var selected : str ;
var selectedUsers : ts ;
locname messageKeyb, usersList, server

begin
while (true) do
in(!message)@messageKeyb ;
is there someone selected?
out("command", "getSelectedItem", ID)@usersList ;
in("command", "getSelectedItem", ID, !selected)@usersList ;
if (selected != "") then

newloc(selectedUsers) ;
out(selected)@selectedUsers ;
there’s some one selected
out("PERSONAL", message, selectedUsers, ∗self)@server

else
out("command", "getSelectedItems", ID)@usersList ;
in("command", "getSelectedItems",

ID, !selectedUsers)@usersList ;
if readp(!selected)@selectedUsers then
there’s some one selected
out("PERSONAL", message, selectedUsers, ∗self)@server

else
no one selected: broadcast
out("MESSAGE", message, ∗self)@server

endif
endif

enddo
end

Listing 12. Node coordinators and processes running on a chat client

Mobile Distributed Programming in X-KLAIM 63

Screenshot 2. Three chat clients and the chat server

A user can specify that a chat message is destined only to a restricted number of
clients by selecting them from the list of connected clients. Such list is indeed attached
to the locality usersList that, in turn, is a special tuple space that provides a sort
of interface for accessing the items of such list (in the KLAVA implementation this
tuple space is an interface for a java.awt.List object). Thus a process can access the
elements of such a list through tuples that start with the string "command" and consist
of a specific command and its arguments. For each command the template of the tuple
is different. If the result of a command has to be retrieved the request is issued with
an out and the response retrieved with an in. An identifier has to be provided so that a
process does not retrieve the result of the request of another process. For instance the
following two lines retrieve multiple selected items in the list (the result is stored in the
ts variable selected):

out("command", "getSelectedItem", ID)@usersList ;
in("command", "getSelectedItem", ID, !selected)@usersList ;

If there is some client selected in this list, the message is sent as "PERSONAL" and the
list of recipients is sent along with the message; otherwise the message is considered
destined to all connected clients.

Screenshot 2 shows three chat clients and the chat server.

10 Conclusions and Related Works

We have presented X-KLAIM, a programming language for implementing distributed
applications that can exploit mobile code and run over a heterogeneous network envi-
ronment. X-KLAIM extends the Linda coordination paradigm with multiple distributed

64 L. Bettini and R. De Nicola

tuple spaces. Thus, the underlying model enables space uncoupling, time uncoupling
and destination uncoupling, and asynchronous, associative and anonymous communi-
cation. We believe that this programming model is suitable for distributed applications,
mobile agents, and, more in general, mobile code. Other models [Deu01], such as the
home-proxy [LO98], can be programmed on top of the X-KLAIM basic model by ex-
ploiting the locality abstractions.

X-KLAIM provides support for moving processes (with strong mobility) and all
the code they will need for execution at remote sites. An interesting spin-off of our
approach is that, since X-KLAIM is based upon the KLAIM formal model [BBD+03],
some properties of systems can be formally proved (e.g., in [BDL04] we prove some
formal properties of a chat system similar to the one presented in Section 9 and of a
mobile agent based software update system). Indeed, a modal logic for KLAIM is being
studied [DL04] and a system to automatically prove KLAIM system properties is under
development.

There are currently a number of Java packages, libraries and frameworks that im-
plement functionalities for programming distributed and mobile systems, and that are
based on the Linda communication model. In the rest of this section, we review some
of them and discuss their relationships with our system.

Jada [CR97] is a coordination toolkit for Java where coordination and communica-
tion among distributed objects is achieved via shared ObjectSpaces that are implemen-
tations of tuple spaces. Remote access to ObjectSpaces is achieved by specifying the
complete IP address and port number, i.e., no locality abstraction is used. Private Ob-
jectSpaces can be dynamically created. No code mobility is supplied by Jada that aims
at providing a coordination kernel for implementing more complex Internet languages
and architectures.

MARS [CLZ98] is a coordination tool for Java-based mobile agents that defines
Linda-like tuple spaces programmable to react when accessed by agents. Such a mech-
anism can be used to control accesses to specific tuples. In X-KLAIM, this is obtained
either by using dynamically created private tuple spaces or by adding to the language
the capability-based type system presented in [DFP99, DFPV00].

Jini [AOS+99] is a connection technology that enables many devices to be plugged
together to form a community on a network in a scalable way and without any planning,
installation, or human intervention. Each device defines services that other devices in
the community may use and drivers that can be downloaded when needed. Jini is devel-
oped on top of the JavaSpaces [AFH99] technologies, a framework for using Linda-like
communication. JavaSpaces introduces some extensions of the Linda original paradigm,
such as event notification, which allows a process to register its interest in future occur-
rences of some event and then to receive communication when the event occurs, and
blocking operations with timeouts and leasing, which allows the presence of a tuple in
a tuple space, or a notification request, to be granted only for a period of time. Leasing
can be obtained also in our language by means of timeouts: a process can sleep for
some time (using timeout), and then can take a tuple away from the tuple space (if it is
still available). JavaSpaces transactions can be programmed in X-KLAIM, by means of
dedicated tuples, which represent transaction life time.

Mobile Distributed Programming in X-KLAIM 65

IBM T Spaces [FLMW98] is a network middleware package that supplies tuple
space-based network communication with database capabilities; it is implemented in
Java by relying on its portability. T Spaces is basically a message processor, in fact a
client’s view of T Spaces is that of a message center and a message database. A DBMS
could be implemented in X-KLAIM by means of a process listening for requests (e.g.,
SQL strings) passed via tuples, to obtain a similar behavior.

Lime [PMR99] exploits the multiple tuple spaces paradigm [Gel89] to coordinate
mobile agents and adds mobility to tuple spaces: it allows processes to have private tuple
spaces and to transiently share them. Although in X-KLAIM tuple spaces are bound to
nodes and nodes cannot move, processes can have objects of the class TupleSpace as
data members and, hence, when processes move, TupleSpace objects move as well.
However, TupleSpace objects are never shared and merged automatically.

Systems such as [BH00, PS97, RASS97, ARS97], implement strong mobility in Java,
by modifying the Java Virtual Machine, to access, save and restore the execution state
of threads. However, this solution can jeopardize one of the most desirable advantages
of Java: portability across platforms. Indeed, one needs to run the modified version of
the JVM in order to use such agents. This is the reason why we preferred not to include
strong mobility in KLAVA; however, this feature is available in X-KLAIM and it is im-
plemented on top of KLAVA by means of an appropriate precompilation phase [BD01].

A feature that is present in systems such as MARS, Lime, Sumatra and T Spaces,
but not in X-KLAIM, is the ability to react to events such as the insertion of a tuple.
This could be programmed by means of a process waiting for a certain tuple, but this
does not exactly implement reactions due to the non-determinism in the selection of the
process waiting for a tuple.

Acknowledgments. We are greatly indebted to Gianluigi Ferrari and Rosario Pugliese
with whom Klaim was conceived and designed. We wish to thank the friends that have
worked on KLAIM and its extensions: Viviana Bono, Daniele Gorla, Michele Loreti,
Eugenio Moggi, Emilio Tuosto and Betti Venneri. Many thanks are due also to Marco
Bernardo and Alessandro Bogliolo for giving us the opportunity and the stimulus to
write these notes.

References

[ACG+96] M. Adams, J. Coplien, R. Gamoke, R. Hanmer, F. Keeve, and K. Nicodemus. Fault-
tolerant telecommunication system patterns. In J.M. Vlissides and J.O. Coplien,
editors, Pattern Languages of Program Design 2, pages 549–562. Addison-Wesley,
1996.

[AFH99] K. Arnold, E. Freeman, and S. Hupfer. JavaSpaces Principles, Patterns and Prac-
tice. Addison-Wesley, 1999.

[AGH00] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language. Addison-
Wesley, 3rd edition, 2000.

[AOS+99] K. Arnold, B. O’Sullivan, R.W. Scheifler, J. Waldo, and A. Wollrath. The Jini Spec-
ification. Addison-Wesley, 1999.

66 L. Bettini and R. De Nicola

[ARS97] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-
aware Mobile Programs. In Vitek and Tschudin [VT97], pages 111–130.

[AS92] B. G. Anderson and D. Shasha. Persistent Linda: Linda + Transactions + Query
Processing. In J. P. Banatre and D. Le Metayer, editors, Proc. of Research Directions
in High–Level Parallel Programming Languages, volume 574 of LNCS, pages 93–
109. Springer, 1992.

[BBD+03] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The KLAIM Project: Theory and Practice. In
C. Priami, editor, Global Computing. Programming Environments, Languages, Se-
curity, and Analysis of Systems, IST/FET International Workshop, GC 2003, Revised
Papers, volume 2874 of LNCS, pages 88–150. Springer, 2003.

[BBV02] L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile Object-Oriented Code.
In F. Arbarb and C. Talcott, editors, Proc. of Coordination Models and Languages,
number 2315 in LNCS, pages 56–71. Springer, 2002.

[BBV04] L. Bettini, V. Bono, and B. Venneri. O’KLAIM: a coordination language with mo-
bile mixins. In Proc. of Coordination 2004, volume 2949 of LNCS, pages 20–37.
Springer, 2004.

[BD01] L. Bettini and R. De Nicola. Translating Strong Mobility into Weak Mobility. In
G. P. Picco, editor, Mobile Agents, number 2240 in LNCS, pages 182–197. Springer,
2001.

[BDL04] L. Bettini, R. De Nicola, and M. Loreti. Formulae Meet Programs Over the Net: A
Framework for Correct Network Aware Programming. Automated Software Engi-
neering, 11(3):245–288, June 2004. Special Issue on Distributed and Mobile Soft-
ware Engineering.

[BDP02] L. Bettini, R. De Nicola, and R. Pugliese. KLAVA: a Java package for distributed
and mobile applications. Software – Practice and Experience, 32(14):1365–1394,
2002.

[Bet03] L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming &
their Implementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003.
Available at http://music.dsi.unifi.it.

[BH00] S. Bouchenak and D. Hagimont. Pickling Threads State in the Java System. In Proc.
of the Technology of Object-Oriented Languages and Systems (TOOLS), 2000.

[BLP02] L. Bettini, M. Loreti, and R. Pugliese. An Infrastructure Language for Open Nets.
In Proc. of ACM SAC 2002, Special Track on Coordination Models, Languages and
Applications, pages 373–377. ACM, 2002.

[BWA94] P. Butcher, A. Wood, and M. Atkins. Global Synchronisation in Linda. Concur-
rency: Practice and Experience, 6(6):505–516, 1994.

[Car96] L. Cardelli. Global computation. In ACM Computing Surveys. 1996. 28(4es), Article
163.

[Car97] L. Cardelli. Mobile computation. In Vitek and Tschudin [VT97], pages 3–6.
[Car99] L. Cardelli. Abstractions for Mobile Computation. In Vitek and Jensen [VJ99],

pages 51–94.
[CG89a] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the

Perplexed. ACM Computing Surveys, 21(3):323–357, 1989.
[CG89b] N. Carriero and D. Gelernter. Linda in Context. Communications of the ACM,

32(4):444–458, 1989.
[CGPV97] G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna. Analyzing Mobile Code Languages.

In Vitek and Tschudin [VT97].

Mobile Distributed Programming in X-KLAIM 67

[CLZ98] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent
Coordination. In K. Rothermel and F. Hohl, editors, Proc. of the 2nd Int. Workshop
on Mobile Agents, volume 1477 of LNCS, pages 237–248. Springer, 1998.

[CR97] P. Ciancarini and D. Rossi. Jada - Coordination and Communication for Java Agents.
In Vitek and Tschudin [VT97], pages 213–228.

[Deu01] D. Deugo. Choosing a Mobile Agent Messaging Model. In Proc. of ISADS 2001,
pages 278–286. IEEE, 2001.

[DFP98] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents
Interaction and Mobility. IEEE Transactions on Software Engineering, 24(5):315–
330, 1998.

[DFP99] R. De Nicola, G. Ferrari, and R. Pugliese. Types as Specifications of Access Policies.
In Vitek and Jensen [VJ99], pages 117–146.

[DFPV00] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control.
Theoretical Computer Science, 240(1):215–254, 2000.

[DL04] R. De Nicola and M. Loreti. A Modal Logic for Mobile Agents. ACM Transactions
on Computational Logic, 5(1):79 – 128, 2004.

[FLMW98] D. Ford, T. Lehman, S. McLaughry, and P. Wyckoff. T Spaces. IBM Systems Jour-
nal, pages 454–474, August 1998.

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on Program-
ming Languages and Systems, 7(1):80–112, 1985.

[Gel89] D. Gelernter. Multiple Tuple Spaces in Linda. In E. Odijk, M. Rem, and J. Syre,
editors, Proc. Conf. on Parallel Architectures and Languages Europe (PARLE 89),
volume 365 of LNCS, pages 20–27. Springer, 1989.

[HCK94] C. Harrison, D. Chess, and A. Kershenbaum. Mobile agents: Are they a good idea?
Research Report 19887, IBM Research Division, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

[HY98] M. Hohlfeld and B.S. Yee. How to Migrate Agents. Available at
http://www.cs.ucsd.edu/~bsy, 1998.

[Kna96] F. Knabe. An overview of mobile agent programming. In Proceedings of the Fifth
LOMAPS workshop on Analysis and Verification of Multiple - Agent Languages,
number 1192 in LNCS. Springer, 1996.

[KWA+01] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home:
Massively Distributed Computing for SETI. IEEE Computing in Science and Engi-
neering, January 2001.

[LO98] D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 1998.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[PMR99] G.P. Picco, A.L. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. In D. Gar-

lan, editor, Proc. of the 21st Int. Conference on Software Engineering (ICSE’99),
pages 368–377. ACM Press, 1999.

[PR98] A.S. Park and P. Reichl. Personal Disconnected Operations with Mobile Agents. In
Proc. of 3rd Workshop on Personal Wireless Communications, PWC’98, 1998.

[PS97] H. Peine and T. Stolpmann. The Architecture of the Ara Platform for Mobile Agents.
In K. Rothermel and R. Popescu-Zeletin, editors, Proc. of the 1st International Work-
shop on Mobile Agents (MA ’97), number 1219 in LNCS, pages 50–61. Springer,
1997.

[RASS97] M. Ranganathan, A. Acharya, S. Sharma, and J. Saltz. Network-aware Mobile Pro-
grams. In Proc. of the USENIX Annual Technical Conf., pages 91–103. USENIX,
1997.

68 L. Bettini and R. De Nicola

[She90] A. H. Sherman. C-Linda Reference Manual. Scientific Computing Associates, Inc.,
1990.

[Tho97] T. Thorn. Programming Languages for Mobile Code. ACM Computing Surveys,
29(3):213–239, 1997. Also Technical Report 1083, University of Rennes IRISA.

[VJ99] J. Vitek and C. Jensen, editors. Secure Internet Programming: Security Issues for
Mobile and Distributed Objects, number 1603 in LNCS. Springer, 1999.

[VT97] J. Vitek and C. Tschudin, editors. Mobile Object Systems - Towards the Pro-
grammable Internet, number 1222 in LNCS. Springer, 1997.

[Whi96] J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents. AAAI Press
and MIT Press, 1996.

Dealing with Node Mobility in Ad Hoc
Wireless Network

Mario Gerla, Ling-Jyh Chen, Yeng-Zhong Lee, Biao Zhou,
Jiwei Chen, Guang Yang, and Shirshanka Das

Computer Science Department, UCLA, Los Angeles, CA 90095, USA

1 Introduction

A Mobile “Ad hoc” wireless NETwork (MANET) is a network established for
a special, often extemporaneous service customized to applications. The ad hoc
network is typically set up for a limited period of time, in an environment that
may change from application to application. As a difference from the Internet
where the TCP/IP protocol suite supports a vast range of applications, in the
MANET the protocols are tuned to a specific customer and application (eg,
send a video stream across the battlefield; find out if there is a fire in the for-
est; establish a videoconference among several teams engaged in a rescue effort,
etc). The customers move and the environment may change dynamically and
unpredictably. For the MANET to retain its efficiency, the ad hoc protocols at
various layers may need to self-tune to adjust to environment, traffic and mis-
sion changes. From these properties emerges the vision of the MANET as an
extremely flexible, malleable and yet robust and formidable network architec-
ture. Indeed, an architecture that can be deployed to monitor the habits of birds
in their natural habitat, and which, in other circumstances, can be organized to
interconnect rescue crews after a Tsunami disaster, or yet can be structured to
launch deadly attacks onto unsuspecting enemies.

MANETs are set apart from conventional wired or wireless infrastructure
type networks by a number of unique attributes and requirements. Perhaps the
two most critical attributes are self-configurability and mobility. A third impor-
tant requirement (which is critically impacted by the first two) is scalability. We
review these attributes next:

Self-Organization: the MANET is deployed and managed independently of
any preexisting infrastructure. This is the most important prerequisite to qual-
ify a wireless network as ad hoc. Consequently, the network must autonomously
determine its own configuration parameters including: addressing, routing, clus-
tering, position identification, power control, etc. In some large networks, special
nodes (eg, mobile backbone nodes) coordinate their position and motion to pro-
vide coverage of disconnected islands. This way, an “infrastructure” may be
created within the ad hoc network itself.

Mobility: the fact that nodes move is probably the most important attribute of
MANETs. Mobility differentiates MANETs from their close cousins, the sensor

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 69–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 M. Gerla et al.

networks. Mobility dictates network and application level protocols. For exam-
ple, rapid deployment in unexplored areas with no infrastructure may require
that some of the nodes form scouting teams/swarms. These in turn coordinate
among themselves to create a task force or a mission. Mobility may be in some
cases a challenge for the designer, and may become part of the solution in other
cases. We can have several types of mobility models: individual random mobil-
ity, group mobility, motion along preplanned routes, etc. The mobility model can
have major impact on the selection of a routing scheme and can thus influence
performance.

Scalability: in both military and civilian applications (eg, large battlefield de-
ployments, urban vehicle grids, etc) the ad hoc network can grow to several
thousands of nodes. For wireless infrastructure-type networks (eg, urban mesh
networks) scalability is simply handled by a hierarchical construction. Mobility
appears to be the discriminator between easy and difficult scaling. A hierarchi-
cal model is very scalable in static networks (as demonstrated by the Internet).
Limited mobility in an infrastructure can be easily handled using Mobile IP or
other handoff and re-direction techniques. Pure ad hoc networks, due to their
self configuring nature and consequent unrestricted mobility, do not tolerate a
classic hierarchy structure and a mobile IP approach. Thus, mobility, jointly
with large scale is one of the most critical challenges in ad hoc designs.

In this chapter we will be studying the “mobility attribute” of ad hoc net-
works and its impact on protocols and operations. We will study mobility under
two different aspects, namely: mobility as an enemy that must be fought, and;
mobility as a friend that can help us design more efficient networks. To be more
precise, we will first address the damage that mobility causes in terms of path
breakage and connectivity partitioning, and will review approaches to alleviate
such effects. Then, we will observe that mobility can actually harnessed to over-
come some of the very problems originating from mobility itself - for example,
the fact that nodes move in groups can be exploited to achieve a highly scalable
routing design not possible with individual random mobility. This will lead to
define situations where mobility “helps”. An important factor that determines
how dangerous or how helpful mobility can be is the mobility pattern. Thus,
we advocate the need for accurate, comprehensive mobility models. Finally, we
will introduce a case study, the Car Torrent, that illustrates the design of an
application based on the mobility of cars in the urban grid.

Before we start, we will provide, in the next section, an overview of recent
trends in the evolution of ad hoc networking. This section will serve as reference
for the problems that will be introduced in later sections.

2 Setting the Context: The Evolving Ad Hoc Network
Market

The concept of ad hoc wireless networking was born in the early 70’s, just months
after the successful deployment of the ARPANET. It was the US Army who first

Dealing with Node Mobility in Ad Hoc Wireless Network 71

discovered the potential of wireless packet switching for their mobile tactical
operations. The first packet radio systems were deployed in the early 70’s, almost
two decades earlier than any other cellular and wireless LAN technology. By the
mid 70’s, the packet radio concept was so familiar and so well understood that
when Bob Metcalf (Xerox Park) came up with the Ethernet design in 1976, the
word spread that this was a very ingenious way to demonstrate ” ALOHA packet
radio” technology on a cable!

In view of these early successes of the ad hoc network technology, one may
ask how come there has not been any significant transfer of technology from mil-
itary to commercial over the past 30 years. The main reason is that the original
military applications scenarios had really nothing to do with “commodity” cus-
tomers. The military solutions could not be easily adapted to commercial needs.
In fact, until recently, the driving ad hoc network model has been the instant
deployment in an unfriendly, remote infrastructure-less area. Battlefield, planet
explorations, disaster recovery etc. have been an ideal match for that model.
Early DARPA packet radio scenarios were consistently featuring dismounted
soldiers, tanks and ambulances. If any transfer of the battlefield technology will
occur, it will probably be to the areas of homeland security and civilian emer-
gency recovery. In those applications, unmanned vehicles (UGVs and UAVs) are
rapidly deployed in areas hostile to man, say, to establish communications before
engaging agents and medical emergency personnel. Still, this is a far cry from
commercial every day applications.

Yet, commercial ad hoc networking is finally emerging in many sectors of our
society. Commercial networks will start small (one or two hops), as an extension
of the wireless Internet infrastructure or of existing personal wireless LANs. They
will not be very demanding in terms of QoS nor efficiency (they use unlicensed
spectrum). Eventually, they may grow large (in fact, very large, in the urban
grid case); but they do not need large size in order to attract the first customer!
Early ad hoc networks will coexist and comply with whatever technology they
will try to “opportunistically” extend, ie 802.11, Bluetooth, ZigBee, UWB etc.
An important consequence of this trend (which is radically different from that
followed by tactical networks) is the fact that commercial ad hoc nets will require
new design criteria and new research in order to evolve efficiently. Some of the
emerging commercial applications are:

– Indoor W-LAN extended coverage
– Hot spot (Mesh Networks) extensions
– Urban vehicle communications
– Campus networks
– Shopping malls, airport lounges

Of this set, we briefly review the last three scenarios, namely, the vehicle ur-
ban grid, the Campus network and the shopping malls. Starting with the vehicle
communications scenario, cars communications today are mostly voice, to the
fixed network, via the cellular system. The wireless data technology advances
will stimulate an explosion of new car applications. To begin, car to Internet

72 M. Gerla et al.

data communications will be greatly enhanced by 3G and mesh network tech-
nologies. In addition to traditional Internet services, there are plenty of “mobile”
Internet applications for cars, from resource discovery (restaurants, shops, tourist
attractions) to entertainment (movie previews) and navigation safety. Extending
the wireless LAN and 3G connections (to negotiate, say, radio signal propagation
obstructions) via opportunistic car to car multihopping will be simple and very
cost-effective. Within the car, short range wireless communications (e.g., PAN
technology) and ad hoc networking will be used for monitoring and controlling
the vehicle’s mechanical components as well as for connecting the driver’s head-
set to the cellular phone. However, by far the most innovative set of applications
will be enabled by car to car communications. Potential applications include car
to car road alerts, coordinated navigation, network video games, road “situation
awareness” and other peer-to-peer interactions. To support these applications,
an “opportunistic” multihop wireless network will evolve, which will connect
cars among each other and to the wireless infrastructure spanning the urban
grid and eventually extending also to intercity highways. This ad hoc network
will alleviate the overload of the fixed wireless infrastructures (3G and hotspot
networks), for example, by allowing direct car to car sharing of popular files.
As shown in Fig. 1, the urban vehicle grid network can also offer an emergency
backup in case of massive fixed infrastructure failures (e.g., terrorist attack, act
of war, natural or industrial disaster, etc). The synergy of car multihop network,
on-board PAN and cellular wireless infrastructure is a good example of hetero-
geneous wireless network aimed at cost savings, performance improvements
and enhanced resilience to failures.

Fig. 1. The urban grid as an emergency network

Dealing with Node Mobility in Ad Hoc Wireless Network 73

The next scenario is the Campus and shopping center. For simplicity,
we use the term “Campus” to refer to a place where people congregate for var-
ious cultural and social (possibly group) activities, thus including Amusement
Park, Industrial Campus, Shopping Mall, etc. Today, on a typical Campus there
are various wireless LAN access points in shops, hallways, street crossings, etc.,
that enable nomadic access to the Internet from various portable devices (e.g.,
laptops, notebooks, PDAs, etc.). Not all areas of a Campus or Mall are covered
by department/shop wireless LANs. Thus, other wireless media (e.g., GPRS,
1xRTT, 3G, etc) may become useful to fill the gaps. There is a clear opportu-
nity for multiple interfaces or agile radios that can automatically connect to the
best available service. The Campus will also be ideal environment where group
networking will emerge. For example, on a University Campus students will form
small workgroups to keep track of their respective locations, to exchange files
and to share presentations, results, etc. In an Amusement Park groups of young-
sters will interconnect to play network games, etc. Their parents will network to
exchange photo shots and video clips. To satisfy this type of close range network-
ing applications, Personal Area Networks such as Bluetooth and IEEE 802.15
may be brought into the picture. As in the vehicular example, “opportunistic”
ad hoc networking will extend access point coverage for Internet applications.

At this point it is appropriate to mention another type of wireless multi-
hop network that is rapidly emerging in urban environments, namely, the mesh
network. This architecture shares many of the characteristics of Wireless LANs
and ad hoc networks at the same time. The MAC protocol is an extension of the
IEEE802.11 family. The IEEE Committee is now working on the IEEE802.11s
standard for such networks. Routing in the mesh is following the ad hoc net-
work models (eg, AODV and DSR). Moreover, in an urban environment, mesh
networks play an important role interconnecting the main types of commercial
ad hoc networks we just described, namely, vehicular networks and the shop-
ping malls. However, we must remember that the mesh network is actually an
“infrastructure” network. It is a “permanent”, public extension of institutional
Wireless LANs. In this respect, the mesh network is similar to the cellular net-
work - though faster to deploy. It would not be a surprise if in the future mesh
networks will be regulated, tariffed and assigned a dedicated spectrum like other
infrastructure networks. Yet, the design of mesh networks as multihop wireless
architectures and topologies will radically differ from that of both the large scale
battlefield designs and the smaller scale, very dynamic, opportunistic commer-
cial network design. One can certainly argue that new design criteria and new
research opportunities are present here as well.

Since our chapter is about mobility, the question is: how will this evolution
from tactical, civilian networks to commercial networks affect our approach to
mobility? The first answer is that in both scenarios the designer must protect
the protocols from the damage of mobility (eg, path breakage, disconnection,
etc). In this respect, the tactical and emergency networks are larger and have
more stringent QoS requirements; thus, they will pose more challenges than the
commercial counterparts. The second answer is that we also must look at op-

74 M. Gerla et al.

portunities to exploit mobility - namely, spontaneous, epidemic dissemination
of information; flexible downloading from peers, etc. These opportunistic ap-
proaches generally make more sense in commercial than in tactical networks - in
part because of the strict constraints of the latter. The reader should keep these
considerations in mind while digesting the wealth of material presented in the
rest of this chapter.

3 Motion Considered Harmful: How to Protect the
Network

In this section, we view mobility as the “enemy”, i.e. as the cause of damage
and disruption in the ad hoc network. We identify three challenges caused by
mobility:

1. Path breakage - we must prevent packet loss, for instance presetting backup
paths etc

2. Topology control traffic overhead - one approach to combat path break-
age is to “update” the topology very frequently. But, this can have dangerous
side effects

3. Long lasting disconnections - how can we cope with network partitions
caused be motion? One approach will be to design delay and disruption
tolerant network protocols.

We address these challenges in the following sections.

3.1 Preventing Path Breakage

To start, we observe that the most visible problem is path breakage: as nodes
move the previously computed path fails. Here several techniques come to our
help. First, we can “prevent” path breakage by predicting when a link on the
path will break (link prediction) and computing an anticipatory backup path
“before” the first path fails. We can also be cautious when we compute the path,
and just choose a path that will connect nodes that are sort of associated with
each other by a common motion, e.g, they “travel” together (i.e., Associative
Based Routing). The third approach consists of using geo-routing. With geo-
routing there is no notion of path, rather, of direction to destination. There
no state kept in the network (as in popular proactive and reactive schemes). As
long as intermediate nodes can forward to destination, the integrity of forward-
ing is preserved, even if a stable path cannot be maintained because of high
mobility.

Link Prediction. In typical mobile networks, nodes exhibit some degree of
regularity in mobility patterns. For example, a car traveling on a road is likely
to follow the path of the road and a tank traveling across a battlefield is likely
to maintain its heading and speed for some period of time. By exploiting a
mobile user non-random traveling pattern, we can predict the future state of the

Dealing with Node Mobility in Ad Hoc Wireless Network 75

network topology and provide a transparent network access during the period of
topology changes. Moreover, by using the predicted information, we can reduce
the number of control packets needed to reconstruct routes and thus minimize
overhead.

In this section, we present mobility prediction to enhance unicast and multi-
cast routing protocols. The proposed scheme utilizes GPS location information
[1]. In our protocol, GPS position information is piggybacked on data packets
during a live connection and is used to estimate the expiration time of the link
between two adjacent nodes. Based on this prediction, routes are reconfigured
before they disconnect. Our goal is to provide a seamless connection service by
reacting before the connection breaks.

We assume a free space propagation model [2], where the received signal
strength solely depends on its distance to the transmitter. We also assume that
all nodes in the network have their clock synchronized; for example, by using
the NTP (Network Time Protocol) [3]. or the GPS clock itself. Therefore, if
the motion parameters of two neighbors (such as speed, direction, and radio
propagation range) are known, we can determine the duration of time these
two nodes will remain connected. Assume two nodes i and j are within the
transmission range T of each other. Let (xi, yi) be the coordinate of mobile
host i and (xj , yj) be that of mobile host j. Also let vi and vj be the speeds,
and θi and θj (0 ≤ θi, θj ≤ 2π) be the moving directions of nodes i and j ,
respectively. Then, the amount of time two mobile hosts will stay connected,
Dt, is predicted by:

Dt =
−(ab + cd) +

√
(a2 + c2)r2 − (ad − bc)2

a2 + c2
(1)

where a = vi cos θi − vj cos θj , b = xi − xj , c = vi sin θi − vj sin θj , and
d = yi − yj . Note that when vi = vj and θi = θj , Dt becomes ∞. The predicted
value is the link expiration time (LET) between the two nodes.

Based on the above mechanism, we propose Distance Vector with Mobility
Prediction (DV-MP) [4]. The protocol uses the route expiration time as the
metric in the route table. Triggered update transmissions are eliminated be-
cause routes are established based on stability. Hence, routing update interval is
relaxed and frequent updates are not required. In addition, using stable routes
minimizes the disruption caused by mobility since a different route with a greater
expiration time is used prior to a given route gets disconnected.

To utilize the prediction information, the mobility vector field is appended
to the route update packet. In addition, the route expiration time (RET) metric
is inserted into the routing table entry. Each node periodically broadcasts a
route table. A sequence number is issued when generating updates, and it is
incremented after each route table broadcast. The sequence number is associated
with routing table entries for a particular origin of the route update. When node
A receives a route table from its neighbor node B, the LET between nodes A
and B is calculated based on the mobility vector contained in the received route
table. Node A’s route table is updated with the following rules:

76 M. Gerla et al.

Fig. 2. A routing table update example

– If an entry for destination D with a better RET is received and the received
sequence number is greater than or equal to the old entry’s sequence number,
node A’s entry for destination D is updated.

– If an entry for destination D with a higher sequence number is received,
node A’s entry for destination D is updated.

Fig. 2 illustrates the route table updating process. Values shown next to each
link are LETS. In Fig. 2(a), node A’s next hop to node D is node E and the
RET through node E is 1. After node A receives the route update packet from
node B, it updates its next hop for destination D to node B as shown in Fig.
2(b) since the route via node B has a higher RET value of three.

There is a tradeoff between route distance and route stability. A route that
has the largest RET will remain connected the longest, but may not have the
shortest hop and/or delay.

Associativity-Based Routing. The problem at hand is to devise a scheme to
compute routes that can adapt well to link changes. Conventional distributed
routing schemes attempt to maintain consistent routing information in the face
of motion by performing ever more frequent link and topology updates. These
however are undesirable as they result in high transmission overhead (we will
address overhead reduction strategies in a later section). An approach that at-
tempts to overcome this problem is the Associativity Based Routing algorithm
(ABR) [5]. ABR is based on a new metric called degree of association stability.

Dealing with Node Mobility in Ad Hoc Wireless Network 77

Every node monitors its ‘Associativity’ with its neighbor nodes in order to
determine the best route. Stability is determined using beacon “ticks”. Each
node periodically transmits a beacon. The higher the number of ticks heard,
the more stable the neighbor is. If all the mobiles along the route have high
associativity ticks, the route is stable. The associativity ticks are reset when
the neighbors or the node in question move out of proximity, not when the
communication session is completed and the route made invalid. The distinctive
feature of ABR, a unicast MANET routing protocol, is the use of ‘associativity’
as a primary metric in order to select more stable and thus long-lived routes.
ABR is on-demand and maintains only the information for the desired routes.
The route maintenance algorithm allows locally reconstructing a subsection of
the route, instead of the entire route. There is no need for periodic route updates.

Geo-Routing and TCP. On-demand routing involves no periodic exchanges
of route information but instead establishes routes when needed by flooding a
route request to the network. This approach works well for small and moderate
sized systems, and for large systems with relatively stable routes and limited
communication patterns with significant destination locality. However, for large
systems with bursty any-to-any communication patterns, and for systems with
fast moving nodes, the overhead (and latency) of route discovery can become
significant. In these cases, an interesting alternative is Geo-Routing. Geographic
routing uses nodes locations as their addresses, and forwards packets (when
possible) in a greedy manner towards the destination. Geographic routing is
scalable, as nodes only keep state for their neighbors, and supports any-to-any
communication pattern without explicit route establishment. Since there is no
explicit path establishment, the scheme is by definition robust to path breakage.
Namely, for successful forwarding it suffices that a neighbor is present in the
direction to destination.

Geographic routing has been shown to dramatically improve the performance
of TCP in ad hoc networks. Suppose that we need to set up a TCP connection
over a mobile ad hoc network. As mentioned earlier, node mobility breaks routes
forcing conventional routing schemes such as DSR or AODV to flood the network
with discovery messages. Flooding is costly, and frequent flooding can saturate
the network and thus degrade performance. A packet may experience significant
long delay before discovering a new route. If the delay is larger than the RTO at
the sender, the TCP sender times out, retransmits a packet, and experiences low
throughput. On the other hand, if route discovery or reply message get lost, the
packet will be dropped. In either case, the result is reduced TCP throughput. In
a network where the route must be frequently recomputed due to node mobility,
TCP will never get an opportunity to transmit at the optimal state and the
congestion window will always be significantly small [6].

Since a node in geo-routing listens for neighbor’s position updates, it passively
estimates the moving velocity of its neighbors and infers immediately whether
a neighbor is still reachable when transmission failure occurs. If the neighbor is
estimated within transmission range, the packet could be “salvaged”, ie trans-
mitted to this neighbor again, or to other neighbors. This local repair is free of

78 M. Gerla et al.

Fig. 3. Sequence Number of TCP over GPSR and AODV in Mobile Ad hoc Network

overhead and efficient. It is a network layer solution to flow contention and to
random loss. With local repair, the packet transmission is robust to High BER,
and can be lost only due to buffer overflow or route failure.

To demonstrate the efficacy of Geographic Perimeter Stateless Routing
(GPSR) we run TCP-NewReno over GPSR [7]. The experiment consists of 20
nodes randomly placed within a 1000mx1000m area. Each node will continu-
ously move within this area with speed randomly selected from 0 to 50m/s for
400 seconds. Random waypoint model is used for node mobility. In all simula-
tions, we only show one TCP connection for clarity. The plot, as shown in Fig.
3, clearly shows that TCP over GPSR achieves much higher throughput than
TCP over AODV.

3.2 Minimize the Control O/H Caused by Motion: Fisheye State
Routing

As it became apparent in the previous sections, a common way to combat mobil-
ity is to refresh the routing tables very frequently. This however leads to another
problem, namely, loss of performance due to high overhead. A solution to the
refresh overhead problem is provided by Fisheye State Routing (FSR) [8] [9].
FSR introduces the notion of multi-level fisheye scope to reduce routing update
overhead in large networks. Nodes exchange link state entries with their neigh-
bors with a frequency that depends on distance to destination. From link state
entries, nodes construct the topology map of the entire network and compute
optimal routes.

FSR is an implicit hierarchical routing protocol. It uses the “fisheye” tech-
nique proposed by Kleinrock and Stevens [10], where the technique was used
to reduce the size of information required to represent graphical data. The eye
of a fish captures with high detail the pixels near the focal point. The detail
decreases as the distance from the focal point increases. In routing, the fisheye

Dealing with Node Mobility in Ad Hoc Wireless Network 79

approach translates to maintaining accurate distance and path quality informa-
tion about the immediate neighborhood of a node, with progressively less detail
as the distance increases.

FSR is functionally similar to LS (Link State) Routing in that it maintains
a topology map at each node. The key difference is the way in which rout-
ing information is disseminated. In LS, link state packets are generated and
flooded into the network whenever a node detects a topology change. In FSR,
link state packets are not flooded. Instead, nodes maintain a link state table
based on the up-to-date information received from neighboring nodes, and peri-
odically exchange it with their local neighbors only (no flooding). Through this
exchange process, the table entries with larger sequence numbers replace the
ones with smaller sequence numbers. The FSR periodic table exchange resem-
bles the vector exchange in Distributed Bellman-Ford (DBF) (or more precisely,
DSDV [11]) where the distances are updated according to the time stamp or se-
quence numbers assigned by the node originating the update. However, in FSR
link states rather than distance vectors are propagated. Moreover, like in LS, a
full topology map is kept at each node and shortest paths are computed using
this map.

In a wireless environment, a radio link between mobile nodes may experience
frequent disconnects and reconnects. The LS protocol releases a link state update
for each such change, which floods the network and causes excessive overhead.
FSR avoids this problem by using periodic, instead of event driven, exchange of
the topology map, greatly reducing the control message overhead.

When network size grows large, the update message could consume con-
siderable amount of bandwidth, which depends on the update period. In or-
der to reduce the size of update messages without seriously affecting routing
accuracy, FSR uses the Fisheye technique. Fig. 4 illustrates the application
of fisheye in a mobile, wireless network. The circles with different shades of
grey define the fisheye scopes with respect to the center node (node 11). The

Fig. 4. Scope of fisheye

80 M. Gerla et al.

Fig. 5. Message reduction using fisheye

scope is defined as the set of nodes that can be reached within a given num-
ber of hops. In our case, three scopes are shown for 1, 2 and > 2 hops re-
spectively. Nodes are color coded as black, grey and white accordingly. The
number of levels and the radius of each scope will depend on the size of the
network.

The reduction of routing update overhead is obtained by using different ex-
change periods for different entries in routing table. More precisely, entries corre-
sponding to nodes within the smaller scope are propagated to the neighbors with
the highest frequency. Referring to Fig. 5, entries in bold are exchanged most
frequently. The rest of the entries are sent out at a lower frequency. As a result,
a considerable fraction of link state entries are suppressed in a typical update,
thus reducing the message size. This is exactly how FSR can handle high mo-
bility with low O/H. In fact, FSR produces timely updates from near stations;
it ignores the detailed motion of far nodes, and creates large latencies in the
propagation of updates from stations afar. However the imprecise knowledge of
the best path to a distant destination is compensated by the fact that the route
becomes progressively more accurate as the packet gets closer to destination. As
the network size grows large, a “graded” frequency update plan must be used
across multiple scopes to keep the overhead low.

Through updating link state information with different frequencies depending
on the scope distance, FSR scales well to large network size and keeps overhead
low without compromising route computation accuracy when the destination is
near. By retaining a routing entry for each destination, FSR avoids the extra
work of “finding” the destination (as in on-demand routing) and thus maintains
low single packet transmission latency. As mobility increases, routes to remote
destinations become less accurate. However, when a packet approaches its des-
tination, it finds increasingly accurate routing instructions as it enters sectors
with a higher refresh rate.

Dealing with Node Mobility in Ad Hoc Wireless Network 81

3.3 Dealing with Long Term Disconnections: Disruption Tolerant
Networking

There have been theoretical studies on the node density required for connec-
tivity [12]. Low density and mobility combined can easily cause long lasting
disconnections. When the ad hoc mobile network becomes partitioned, one may
attempt to “reconnect” it, or simply to cope with the “temporary” disconnec-
tion. Several approaches have been proposed to reconnect the network. Li and
Hou investigated how to deploy as few additional nodes as possible to improve
the connectivity in [13]. The problem was formulated as NP-complete and heuris-
tically solved with triangulation-based algorithms. Zhao et al proposed another
solution called Message Ferrying to connect partitioned sub-networks [14]. Mes-
sage ferries are special nodes that, with their mobility patterns and trajectories
under control, relay packets between network partitions. Message Ferrying shares
a similar idea with the work of Delay-Tolerant Networking Research Group [15]
and DARPA Disruption Tolerant Networking [16] in that data is bundled and
transmitted when intermittent connectivity is available.

In this section we outline another systematic solution to network partitioning,
incorporating the concept of Disruption Tolerant Networking (DTN) with peer-
to-peer (P2P) overlays [17] [18] [19] [20]. The main motivation stems from a
paradox existing in current ad hoc networks. On the one hand, ad hoc networks
are set up in emergency scenarios, e.g. a battlefield or disaster scene. Application
data is in general important and cannot be lost. On the other hand, ad hoc
networks often operate in an adverse environment and are much less reliable than
the Internet or infrastructure-based wireless networks. To bridge the gap between
application needs and network limitations, we propose to build a Disruption-
Tolerant Storage (DTS) overlay on top of the ad hoc network.

The DTS overlay consists of nodes equipped with large storage and powerful
CPUs. These nodes form a P2P overlay network and jointly provide safe data
storage to connections affected by network partitioning. More specifically, when
the network is partitioned, the routing protocol will detect it and notify the
source of each affected connection. The source node then sets up a conversation
with the closest DTS overlay peer and submits the data files for storage. The
submitted files are indexed using distributed hash table (DHT) indexing tech-
niques and are replicated to a set of peers. Data is delivered when the connection
between a DTS overlay peer and the original destination node is stored. Two
methods of data delivery exist: either a DTS peer pushes data to the destination,
or the destination submits a query to the DHT index and pulls data from the
DTS overlay.

Benefits of the DTS overlay solution are summarized as follows. First, it ex-
ploits node heterogeneity in ad hoc networks by storing data at nodes with large
storage capacities. Second, data is replicated across the overlay and therefore
more robust to node failures. Third, DTS overlay peers can process stored data,
e.g. transcode video to an appropriate bit rate, before delivering to the destina-
tion. The DTS overlay thus provides safe and flexible storage services to impor-
tant data that would otherwise be dropped when the network is partitioned.

82 M. Gerla et al.

4 Mobility Considered Helpful: Exploiting Mobility to
our Advantage

In earlier sections we depicted mobility as a the necessary “evil” of the ad hoc
network flexibility and selfconfigurability. We have shown ways to seek protection
from path disruptions caused by mobility, and to make our applications operate
correctly in spite of mobility. In reality, mobility can also be a “friend”, in that
it can be exploited to improve performance. In this section we show several
examples of “friendly” mobility. To start, we show that “group” mobility can
be harnessed via “landmarking” to lead to more scalable routing. Moreover, if
mobile backbone nodes are deployed in the ad hoc network, connectivity
can be enhanced. Related to the concept of conveniently relocatable nodes is
data ferrying using data mules. Finally, last encounter routing exploits
node motion and gossiping to achieve free dissemination of information.

4.1 Landmark Routing for Group Mobility

Typically, when wireless network size and mobility increase (beyond certain
thresholds), current “flat” proactive routing schemes (i.e., distance vector and
link state) become all together unfeasible because of line and processing O/H.
In [21], we introduce a novel table driven routing protocol for wireless ad hoc
networks - Landmark Ad Hoc Routing (LANMAR), LANMAR combines the
features of Fisheye State Routing (FSR) [9] and Landmark routing [22]. The key
novelty is the use of landmarks for groups of nodes that move together (e.g., a
team of co-workers at a convention or a tank battalion in the battlefield) in order
to reduce routing update overhead. Like in FSR, nodes exchange link state only
with their neighbors. Routes within Fisheye scope are accurate, while routes to
remote groups of nodes are “summarized” by the corresponding landmarks. A
packet directed to a remote destination initially aims at the Landmark, as it
gets closer to destination it eventually switches to the accurate route provided
by Fisheye. In [23], we introduce an enhanced version of LANMAR which sup-
ports landmark election and provides a flexible way for the protocol to cope with
a dynamic and mobile network without compromising scalability.

Network Model and Data Structures. Each node has a unique identifier,
transmission range R, and landmark flag. Nodes move around and change speed
and direction independently. An undirected link (i, j) connects two nodes i and j
when the distance is less than or equal to the transmission R. For each node i, one
list and three tables are maintained. They are: a neighbor list Ai, a topology table
TTi, a next hop table NEXTi and a distance table Di. Each destination j within
fisheye scope has an entry in table TTi which contains two parts: TTi.LS(j) and
TTi.SEQ(j). TTi.LS(j) denotes the link state information reported by node j.
TTi.SEQ(j) denotes the time stamp indicating the time node j has generated
this link state information. Similarly, for every destination j which is within its
fisheye scope or which is a landmark node. NEXTi(j) denotes the next hop
to forward packets destined to j on the shortest path, while Di(j) denotes the

Dealing with Node Mobility in Ad Hoc Wireless Network 83

distance of the shortest path from i to j. The entries in next hop table NEXTi

which point to landmarks form a new table called LMDVi. Additionally, one or
more link weight functions may be defined and used to compute the shortest path
based on a specific metric, possibly with constraints. For instance, a bandwidth
function can be used to support QoS routing. In this paper, we limit ourselves
to mm hop paths, thus the link weight is 1.

Landmark Ad Hoc Routing Protocol(LANMAR). The key novelty in
LANMAR is the notion of keeping track of logical subnets in which the mem-
bers have a commonality of interests and are likely to move as a “group” (e.g.,
brigade in the battlefield, colleagues in the same organization, or a group of stu-
dents from same class). Moreover, a “landmark” node is elected in each subnet.
The scheme is an extension of FSR. It improves scalability by reducing routing
table size and update traffic O/H. More precisely, It resolves the routing table
scalability problem by using an approach similar to the landmark hierarchical
routing proposed in [22] for wired networks. In the original landmark scheme,
the hierarchical address of each node reflects its position within the hierarchy
and helps finding a route to it. Each node has full knowledge of all the nodes
within the immediate vicinity. At the same time each node keeps track of the
next hop on the shortest path to various landmarks at different hierarchical lev-
els. Routing is consistent with the landmark hierarchy and the path is gradually
refined from top level hierarchy to low levels as a packet approaches destination.

We apply the above landmark concept to FSR to reduce routing update
overhead for nodes that are far away. Each logical subnet has one node serving
as “landmark”. Beyond the fisheye scope the update frequency of the landmark
nodes remains unaltered, while the update frequency of regular nodes is reduced
to zero. As a result, each node will maintain accurate routing information about
immediate neighborhood and as well as to landmark nodes. When a node needs
to relay a packet, if the destination is within its neighbor scope as indicated in
the routing table, the packet will be forwarded directly. Otherwise, the packet
will be routed towards the landmark corresponding to the destination logical
subnet. The packet does not need to go all way to the landmark. Rather, once
the packet gets within the scope of the destination, it is routed to it directly.

The routing update exchange of LANMAR routing is similar to FSR. Each
node periodically exchanges topology information with its immediate neighbors.
In each update, the node sends entries within its fisheye scope. It will also piggy-
back a distance vector of all landmark nodes. Through this exchange process, the
table entries with larger sequence numbers replace the ones with smaller sequence
numbers. As a result, each node has detailed topology information about its
neighborhood and has a distance and routing vector to all landmark nodes.

Typically, all members in a logical subnet are within the scope of the land-
mark, thus the landmark has a route to all members. It may happen, however,
that some of the members ”wonder” outside of the scope because of lack of coor-
dination in the group mobility pattern. To keep track of such “outsiders”, i.e. to
make a route to them known to the landmark, the following modification to the
routing table exchange was made. Each node, say i, on the shortest path between

84 M. Gerla et al.

a landmark L and an “outsider” member l of such landmark keeps a distance
vector entry to l. Note that if l is within scope of i, this entry is already included
in the vector. When i transmits its distance vector to neighbor j, say, then j
will retain the entry for member l only if d(j, l) < scope or d(j, L) < d(i, L). The
latter condition occurs if j is on the shortest path from i (and therefore from
l) to L.

Landmark Election. At the beginning of the execution, no landmark exists.
Protocol LANMAR only uses the FSR functionality. As the FSR computation
progresses, one of the nodes will learn (from the FSR table) that more than
a certain number of group members (say, N) are in the FSR scope. It then
proclaims itself as a landmark for this group. The landmark information will
be broadcast to the neighbors jointly with the topology update packets. The
landmark information is a status pair containing the ID of the landmark and
the number of group members it can reach within the FSR scope. When more
than one node declares itself as a landmark in the same group, the node with
the largest number of group members wins the election. In case of tie, lowest ID
breaks the tie. The competing nodes defer.

After the first few topology updates, nodes near the center of a group will
have enough group members in their table to qualify as landmarks. These nodes
will take the role of landmark, and build their LMDV. The landmark status
pair and the LMDV will be broadcast to neighbors with the next FSR exchange
packet. When its non-landmark neighbors receive this update message, they will
update their LMDV using the incoming LMDV. If a neighbor is a landmark itself,
a winner competition is performed. The landmark status pair and LMDV at this
node is set up corresponding to the competition result. The updated LMDV and
the node’s landmark status pair will be propagated again jointly with the routing
update packets. When the last landmark change information reaches every node,
only one node will remain as landmark for each group. The election converges
quite rapidly. At steady state, a landmark propagates its presence to all other
nodes like a sink in DSDV [11].

In a mobile environment, an elected landmark may eventually lose its role.
The role shifting is a frequent event. In a transient period, there exist several
landmarks in a single group. The transient period may be actually the norm
at high mobility. This transient behavior can be drastically reduced by using
hysteresis.

A great advantage of landmark election in LANMAR is recovery from land-
mark failures. In a dynamic network, nodes may die and come up. When a
landmark dies, its neighbors will detect the silence after a given timeout. The
neighbors of the same group will then take charge as landmarks and broadcast
this new landmark information. A new round of landmark election then starts
over the entire network.

In conclusion, LANMAR is an extension of Fisheye Routing which exploits
group mobility by “summarizing” the routes to the group members with a sin-
gle route to a landmark. LANMAR provides an efficient, scalable solution for
wireless, mobile ad-hoc network as well as a dramatic reduction in route table

Dealing with Node Mobility in Ad Hoc Wireless Network 85

storage overhead with respect to FSR leading to both line and storage over-
head reduction.

4.2 GeoLANMAR: Geo Assisted Landmark Routing

GeoLANMAR routing protocol is based on LANMAR and extends LANMAR
by applying greedy forwarding to route data packet to remote landmark nodes
instead of relying on table driven forwarding using the routing info propagated
by DSDV. The main advantage of Geo LANMAR over LANMAR is additional
robustness to mobility (which is granted by the use of geo-forwarding - as
discussed earlier). The geo-routing scheme is used to route packet to the remote
landmark nodes (i.e. geo-landmarks) outside of the local scope. The number of
landmark nodes is typically much smaller than the total number of nodes in the
network. In GeoLANMAR, the geo-routing scheme offers much lower update
rate required for advertisements and more robust forwarding for long distance
routing, while local scope routing based on link state reduces update overhead.

In the greedy forwarding scheme applied to GeoLANMAR, intermediate
nodes do not have to store routing tables to landmark nodes. They do not need
to keep routing tables up-to-date either. The advantage of greedy forwarding is
to permit dynamic adjustment for update rate of landmark routing packets. The
dynamic update rate is determined by its movement and it offers GeoLANMAR
a better scalability than LANMAR in terms of control overhead, delivery ratio,
and throughput. Compared to geo-routing protocols, GeoLANMAR will over-
come the inaccuracy of positions from the GPS devices since it uses link-state
routing for packets near destinations. GeoLANMAR does not need any location
service which is required by most geo-routing protocols.

A geo-landmark node is a special node dynamically elected by a group of
nodes that are moving together (e.g., a rescue team). The Geo-landmark node
propagates ID group, IP address and Geo-location to all other nodes in the
network. As depicted in Fig. 6, Geo-Landmark LM transmits the information of
its group to other nodes in the network.

Fig. 6. Long distance Greedy forwarding applied through Landmarks as reference

points to reach the destination D

86 M. Gerla et al.

Referring to Fig. 6, if the source S wants to communicate with mobile node
D, it verifies whether the destination D can be reached immediately through
the local link-state routing. If there is no entry found in local routing table,
it tries to send the data packet toward destination D through geo-forwarding.
By virtue of landmark distance vector advertising, the GeoLANMAR protocol
can get the position of the destination node D without using a Location Server
(normally required in conventional geo-routing protocols). From the group ID,
and from geo-location of destination D, one can apply geo-forwarding by using
the knowledge of the destination landmark. When the packet reaches the local
scope of destination D, the data packet can be directly sent to D through the
table-driven forwarding.

To perform such management, each node needs to maintain the following ta-
bles: a local topology table, a local routing table, and a landmark table with the
geo-location information and the group IDs of all landmarks in the networks.
When a node needs to send a packet outside its local scope, it checks its lo-
cal topology table and selects as the next hop the nearest to the destination
landmark node.

For the management of very large network with group mobility, the GeoLAN-
MAR protocol seems to offer a good solution. The drawback of the protocol is
the distance vector periodic updating, which is required in order to maintain ac-
curate landmark tables. Fortunately, because the number of landmarks is much
lower than the total number of nodes inside the networks, this protocol can get
a good trade-off for large size networks with group motion.

4.3 Mobile Backbone Network

A Mobile Ad Hoc Network (MANET) is usually assumed to be homogeneous,
where each mobile node shares the same radio capacity. However, a homogeneous
ad hoc network suffers from poor scalability. Recent research has demonstrated
its performance bottleneck through both theoretical analysis and simulation ex-
periments and testbed measurements. Poor scalability is due to the fact that in
ad hoc networks, most bandwidth of a node is consumed by forwarding packets.
This is further exacerbated by heavy routing overhead of ad hoc routing pro-
tocols when the network size is large. This will significantly affect several large
scale ad hoc applications, such as in a digital battle field, where hundreds or
even thousands of nodes must be supported. Building a physically hierarchical
ad hoc network is a very promising way to achieve good scalability. We present
a design methodology to build a hierarchical large-scale ad hoc network using
different types of radio capabilities at different layers in [24]. In such a struc-
ture, nodes are first dynamically grouped into multi-hop clusters. Each group
elects a cluster- head to be a backbone node (BN). Then higher-level links are
established to connect the BNs into a backbone network. Following this method
recursively, a multilevel hierarchical network can be established.

Mobile Backbone Network. The Mobile Backbone Network (MBN) is a hi-
erarchical network in which a set of nodes functionally more capable than the

Dealing with Node Mobility in Ad Hoc Wireless Network 87

Fig. 7. Illustration of an ad hoc network with multilevel mobile backbones

ordinary nodes form the backbone. The basic scenario consists of a large numbers
of mobile nodes deployed over a large area. Among these, the backbone nodes
(BN) have the ability of forming multilevel backbone networks using long range
radios. Usually, radios at each backbone level use some form of channel separa-
tion (eg, antenna directivity, different codes, different frequencies, or combina-
tions thereof) in order to minimize interference across levels. Radios in the same
level share the same frequency and channel resources. Unlike the wired network,
the nodes in the mobile backbone network are also moving, thus the backbone
topology is dynamically changing. In many scenarios such as the battlefield, the
hierarchical structure is an inherent feature of the application. Different units
have different communication devices and capacities. For example, the wireless
radios installed in military vehicles have a more ample energy supply and thus
are more powerful than those carried by the dismounted soldiers. Unmanned
Aerial Vehicles (UAVs) and even satellites can be used for providing higher level
and broader reach connections. Fig. 7 illustrates a three level hierarchy where
the first level supports ground communications among soldiers; and second and
third level are implemented using tanks and UAVs respectively. In this section,
most of our discussions are based on a two level hierarchical architecture. How-
ever, the routing and clustering algorithms and protocols can be easily extended
to multi-level hierarchical networks.

Hierarchical ad hoc networks have great potential in real time constrained
applications, especially in the digitized battlefield. However, the backbone design
is quite challenging if the nodes are mobile. Three critical issues are involved
in building such a MBN, namely: optimal number of BNs, BN deployment and
routing. In theory, a multi-level MBN can solve the scaling law problem observed
in flat networks. However, MBNs with too many levels are not easy to operate
and suffer from hardware limitations (e.g. each levels requires an additional
radio). Thus, one generally opts for a MBN with a few levels (say, two) and
must decide the number of BNs.

After the number of BNs is decided, the second issue is how to deploy them.
The main difficulties are mobility and BN failures. Using a clustering scheme
to elect the BNs is a natural choice. Clustering has been widely used to form

88 M. Gerla et al.

logically hierarchical networks [25] [26] and to partition a large scale network
into small groups. However, a drawback of current clustering schemes is cluster
instability, as indicated in many papers such as [25]. Conventional clustering
schemes work effectively only in networks with very low mobility or no mobility
at all, such as the sensor networks. Instability of the clusters and frequent changes
of BNs introduce high routing O/H and make the hierarchy difficult to operate.
In this paper, we will present a new clustering scheme to achieve good stability.

Routing is the third critical issue: The main requirement is to utilize the
wireless backbone links efficiently and in a robust way. The main challenge of
MBN routing with respect to the general Internet routing problem is mobility:
address prefixes would need to be continuously changed as nodes move! The
ensuing address management problem would be very complex and would offset
the hierarchy advantages.

Backbone Node Deployment and Clustering. After identifying the opti-
mal number of BNs as a function of number of nodes and channel bandwidths,
the second critical issue is how to achieve an optimal BN deployment. The sim-
plest way is to pre-assign backbone nodes and scatters them uniformly across the
field at initialization. However, such a static deployment has two main problems.
First, the BNs are constantly moving. Thus after some time, some BNs may con-
gregate in small geographical areas, creating congestion; while other areas may
be depleted of BNs all together. This certainly is not a good scenario. The second
concern is fault tolerance. BNs may fail or even be destroyed (a likely event con-
sidering the emergency applications envisioned for MANETs). New BNs should
be deployed to replace the defunct ones. Static deployment cannot fulfill these
requirements. Our solution is to deploy a large enough number of backbone ca-
pable nodes (ie, nodes with long range radios) and to dynamically elect a proper
subset to BNs. When one BN is destroyed or moves out of a certain area, a
new BN will be selected from the backbone capable node pool. If two backbone
nodes move near to each other, one of them will give up its backbone role. The
backbone node election is completely distributed and dynamic. It must result in
a backbone node distribution that reflects the distribution of ordinary nodes. A
Distributed Clustering algorithm is the most common approach to this problem,
as described in [25] [26].

Ad Hoc Routing with Mobile Backbones. Once elected, the BNs establish
connections among each other using the long range radios. The next issue is
routing. The routing scheme in the MBN has a main requirement: it must be
able to exploit the high level backbone links, enhancing throughput and delay
with respect to scheme without a backbone. It must do so without compromising
(in fact, possibly enhancing) scalability and fault tolerance. In fact, considering
the emergency recovery, unfriendly or even hostile environments where ad hoc
networks are deployed, the backbone nodes can very possibly become disabled
or may fail to operate. Maintaining connectivity in the face of backbone node
failures is a strong requirement. Thus, the addressing and routing scheme cannot
be totally “dependent” on the health of the backbone. For this reason, a cellular

Dealing with Node Mobility in Ad Hoc Wireless Network 89

network like addressing and routing scheme will not work here. In a cellular
network, the HLR/VLR (Home Location Register/Visiting Location Register)
scheme will properly route the call request packet to the area where the roaming
user has now registered. This requires that the Home Location of the user is
up, and has a pointer to the Visited Location. In our Mobile Backbone Network
where BNs disappear and come up very frequently, there is no reliable Home
Location for any mobile. Redundant, robust Name Server schemes haven been
recently proposed [19]. But they are not appropriate for our application, as
their complexity would offset the advantages reaped by the hierarchical routing.
To meet the challenges of our extremely volatile environment, we extend the
Landmark Ad Hoc Routing (LANMAR) [21] [23] to operate in the MBN. We
call this solution Hierarchical LANMAR Routing (H-LANMAR).

Hierarchical Landmark Ad Hoc Routing (H-LANMAR). LANMAR can
be well integrated into the MBN by virtue of the fact that it is itself logically
hierarchical. Routing information to remote nodes is summarized by landmarks.
Now, we will extend such a logical hierarchical structure to utilize the physical
hierarchy. In the original LANMAR scheme, we route the packet toward the
corresponding remote landmark along a long multi-hop path. In the hierarchi-
cal MBN, we can route the packet to the nearest BN, which then forwards it
through a chain of MBN links to a remote BN near the remote landmark. Fi-
nally, the remote BN sends the packet to the remote landmark or directly to the
destination if it is within its scope. This will greatly reduce the number of hops.
The procedure is illustrated in Fig. 8. We can see that by utilizing the backbone
links, the 8-hop path is reduced to be 4 hops long, a great improvement!

Fig. 8. Illustration of H-LANMAR routing in a MBN

We extend the LANMAR routing protocol so that it can take the “short cut”
described above. First, all mobile nodes, including ordinary nodes and BNs, are
running the original LANMAR routing via the short-range radios. This is the
foundation for falling back to “flat” multi-hop routing if BNs fail. Second, a BN
will broadcast the landmark distance vectors to neighbor BNs via the backbone

90 M. Gerla et al.

links. The neighbor BNs will treat this packet as a normal landmark update
packet. Since this higher level path is usually shorter, it will win over (and thus
replace) the long multi-hop path in the level 1 network. From landmark updates
the ordinary nodes thus learn the best path to the remote landmarks, including
the paths that utilize the backbone links.

One important feature of our routing scheme is reliability and fault tolerance.
The ordinary nodes are prevented from knowing the backbone links explicitly.
The backbone links are indirectly learned via BN routing broadcasts. Now, sup-
pose a BN of one group is destroyed by enemies, the shorter paths via this
BN will expire. Then new landmark information broadcasted from other nodes
will replace the expired information. Thus, in the worst case, routing in this
group goes back to original landmark routing while other groups with BNs can
still benefit from backbone links among themselves. When all backbone capable
nodes are disabled, the whole network becomes a ”flat” ad hoc network running
the original level 1 LANMAR routing, which can still provide connectivity, yet
at lower performance.

In this section, we presented schemes to establish and operate a “physical”
multi-level hierarchical ad hoc network with mobile backbones (MBN). The op-
timal numbers of backbone nodes at each layer are derived through theoretical
analysis. A stable multihop clustering scheme is also proposed to elect required
backbone nodes and organize the hierarchical network. For efficient routing in
such a hierarchical structure, we proposed to use an extension of the LANMAR
routing scheme. The LANMAR routing solution is key to the feasibility and ef-
ficiency of the hierarchical structure. It is robust to mobility and yet reaps the
benefits of the hierarchy. For example, backbone links are automatically selected
by the routing scheme if they can reduce hop distance to remote destinations.
Fault tolerance and system reliability of the proposed scheme have also been
discussed. In essence, the proposed scheme combines the benefits of “flat” LAN-
MAR routing and those of a physical network hierarchy.

4.4 Last Encounter Routing

In large-scale ad hoc networks, some or all the nodes may be moving. There-
fore, the network topology changes with time. Routing algorithms have to base
routing decisions on at least a partial knowledge of the network topology. The
collection and exchange of topology information (e.g., distance vectors or link
states) consumes valuable bandwidth and energy. A variety of routing algorithms
have been developed that trade off the quality of routes, their computing and
transmission overhead, and the degree of permissible mobility [27].

An elegant way of reducing this cost is by exploiting the distance effect [28]:
basically the precision with which the destination location must be known to
make a good, albeit suboptimal, routing decision, decreases with distance. If the
node is far away from the destination, an imprecise estimate is sufficient, and vice
versa. Routing schemes such as DREAM [28] exploit this effect to develop more
“lazy” approaches to maintaining location information about all the nodes in
the network. This approach essentially amounts to trading off a smaller location

Dealing with Node Mobility in Ad Hoc Wireless Network 91

Fig. 9. A last encounter table in every node remembers the location and time of the

last encounter with every other node in the network. In last encounter routing (LER),

this table is queried by a packet to improve, if possible, its estimate of the location of

its destination node

maintenance overhead, which is incurred continually with every topology change,
for a slightly larger routing cost, as routes are in general suboptimal.

The authors of [29] go one step further and try to completely eliminate the
cost to update location state. If nodes are not allowed to periodically relay any
explicit location updates (as in Link State or Distance Vector), then the only
topology information available at a node is the history of other nodes it has
encountered in the past, i.e., nodes it has directly come into contact with. More
specifically, we assume that every node remembers the time and location of
its last encounter with every other node (i.e., when these two nodes last were
directly connected neighbors; cf. Fig. 9). We call a routing algorithm a last
encounter routing (LER) algorithm if at every node along a packet’s route, the
next hop decision depends only on (a) the time and location of that node’s last
encounter with the destination, and (b) auxiliary information carried by that
packet. The main question we ask in this paper is the following: if all the nodes
in the network are moving, is it possible for LER schemes to compute efficient
routes, despite the absence of a location service? We show that, depending on the
mobility processes, this is indeed possible. This is quite remarkable, given that
LER invests no network capacity to track nodes, i.e., to maintain distributed
location information.

The insight at the root of our investigation is the following. On the one hand,
mobility of the nodes creates uncertainty about their location. On the other
hand, consider some node d that is the destination of a packet. Some other
node i that has encountered d in the past remembers the location of that last
encounter. Three observations explain why LER routing can give rise to efficient
routes: (a) the location of the last encounter is still a reasonably good estimate
of the destination’s location after some time; (b) the time of that encounter, or
equivalently, the “age” of the estimator, is a measure for the precision of that

92 M. Gerla et al.

estimate; (c) node i’s own mobility means that a recent estimate of d’s position
is available at some distance from d; given that d encounters other nodes all the
time due to mobility, this essentially leads to a diffusion effect of noisy position
estimates around d. The locality in the mobility processes inherently leads to
a distance effect, in that better position estimates for d become available as a
packet approaches d’s current position.

Clearly, the feasibility of LER schemes will depend on the mobility process.
If at any point in time, a node can jump uniformly over the entire surface of
interest, an estimate based on the previous location is of no help. However, in
the more likely scenario where the process has some locality, such as a random
walk, then aged location information is useful, and diffuses at the same speed
as the node moves itself. If the density of neighbors is sufficient both along the
path of the destination node (so as to diffuse sufficiently) and along the path of
a packet moving towards the destination (to get enough new estimates), then
LER routing can work well.

4.5 Data Ferrying with Mules

Routing in ad hoc networks has been an active research field in recent years. How-
ever, most of the existing work focuses on connected networks where an end-to-end
path exists between any two nodes in the network. In this section, we focus on mo-
bile networks where nodes are sparsely distributed such that network partitions
can last for a significant period. Sparse networks naturally arise in a variety of
applications. For example, imagine the following hypothetical disaster scenario.
A severe earthquake has occurred which collapses buildings, traps people in the
debris, damages utilities and roads, and causes fires and explosions. Under this
situation, the ability to communicate, even at low rates, is extremely valuable for
sharing vital information (such as the number and locations of survivors, dam-
ages and potential hazards) and coordinating rescue efforts. However, providing
communication capacity is difficult. First, fixed and stable communication infras-
tructure might be destroyed. Even if some infrastructure is usable, most rescue
participants and victims may not have access to it. Second, available devices such
as cell phones or PDAs can only communicate within a limited range. Due to the
size of the area affected, a connected ad hoc network cannot be formed using these
devices alone. To overcome partitions in sparse networks, a straightforward ap-
proach is to use radios with longer transmission ranges and maintain persistent
network connectivity. However, since many mobile nodes use batteries for power
supply, the use of a long range radio leads to excessive energy consumption. In ad-
dition, the availability of such devices in critical scenarios would be questionable.

To help overcome disconnection problems like discussed above, a Message
Ferrying (MF) approach for data delivery in sparse networks is proposed [8].
Referring to Fig. 10, MF is a proactive mobility assisted approach which utilizes
a set of special mobile nodes called message ferries (or ferries for short) to pro-
vide communication services for nodes in the network. Similar to their real life
analog, message ferries move around the deployment area and take responsibility
for carrying data between nodes. The main idea behind the Message Ferrying

Dealing with Node Mobility in Ad Hoc Wireless Network 93

Fig. 10. An example of message delivery in the node-initiated MF scheme

approach is to introduce non-randomness in the movement of nodes and exploit
such non-randomness to help deliver data. Message ferrying can be used effec-
tively in a variety of applications including battlefields, disaster relief, wide area
sensing, non-interactive Internet access and anonymous communication. For ex-
ample, in the earthquake disaster scenario, unmanned aerial vehicles or ground
vehicles that are equipped with large storage and short range radios can be used
as message ferries to gather and carry data among disconnected areas. This en-
ables rescue participants and victims to use available devices such as cell phones,
PDAs or smart tags for communication.

While the previous paper [30] has studied the idea of Message Ferrying in net-
works with stationary nodes, [14] considers networks with mobile nodes. More
specifically, [14] develops two variations of the MF schemes, depending on whether
ferries or nodes initiate non-random proactive movement. In the Node-Initiated
MF (NIMF) scheme, ferries move around the deployed area according to known
routes and communicate with other nodes they meet. With knowledge of ferry
routes, nodes periodically move close to a ferry and communicate with the ferry.
In the Ferry-Initiated MF (FIMF) scheme, ferries move proactively to meet nodes.
When a node wants to send packets to other nodes or receive packets, it generates
a service request and transmits it to a chosen ferry using a long range radio. Upon
reception of a service request, the ferry will adjust its trajectory to meet up with
the node and exchange packets using short range radios. In both schemes, nodes
can communicate with distant nodes that are out of range by using ferries as relays.

5 Mobility Modeling: A Virtual Track Markov Chain
Approach

The mobility model is one of the most important factors that impact the perfor-
mance of a mobile ad hoc network (MANET). Traditionally, the random way-

94 M. Gerla et al.

point mobility model has been used to model the node mobility, where the move-
ment of one node is modeled as independent from all others. However, in reality,
especially in large scale military scenarios, mobility coherence among nodes is
quite common. One typical mobility behavior is group mobility. Thus, to investi-
gate military MANET scenarios, an underlying realistic mobility model is highly
desired. We recently proposed a “virtual track” based group mobility model (VT
model) that closely approximates the mobility patterns in military MANET sce-
narios. It models various types of node mobility such as group moving nodes,
individually moving nodes as well as static nodes. Moreover, the VT model not
only models the group mobility, it also models the dynamics of group mobility
such as group merge and split. The VT based mobility model is one of Markov
Chain Driven Models. This model uses random seeds to determine the speed and
direction of nodes.

Group mobility models have drawn a lot of interest recently. The mobility
models proposed so far in the literature assume some kind of permanent group
affiliation. Also they require that each node belong to a single group. In reality in
a typical military scenario, a much more complex mobility behavior is observed.
Some nodes move in groups; while others move individually and independently; a
fraction of nodes are static. Moreover, the group affiliation is not permanent. The
mobile groups can dynamically re-configure themselves triggering group split and
mergence. All these different mobility behaviors coexist in military scenarios. A
good realistic mobility model must capture all these mobility dynamics in order
to yield realistic performance evaluation results, which, unfortunately, is not
satisfactorily captured in any of the existing models.

We refer to the non-uniform, dynamic changing scenario described above
as “heterogeneous” group mobility scenario. Here, different mobility behaviors
such as group motion (including group merge and split), individual motion as
well no motion can all coexist. Our proposed “virtual track” based group mo-
bility model (VT model) handles all these heterogeneous mobility behaviors. In
this model, a certain number of “switch stations” are randomly placed in the
field. These stations are all interconnected by “virtual tracks” with given track
width. Groups move along the virtual tracks towards the stations. At a station,
a group can then be split into multiple groups heading to different stations (e.g.
swarming). Groups entering the same station may also merge into one group.
The individually moving nodes are then modeled as random moves (using the
waypoint model) without the constraint of the virtual tracks.

The key idea of the proposed model is to use some “virtual tracks” to model
the dynamics of group mobility. Some “switch stations” are first randomly de-
ployed in the field. These stations are then connected via virtual tracks with given
track width. The grouped nodes must move following the constraint of the tracks.
At the switch stations, a group can then be split into multiple smaller groups;
some groups may be even merged into a bigger group. Such group dynamics
happen randomly under the control of configured split and merge probabilities.
Nodes in the same group move along the same track. They also share the same
group movement towards the next switch station. In addition, each group mem-

Dealing with Node Mobility in Ad Hoc Wireless Network 95

Fig. 11. Overview of Virtual Track Based Group Mobility Model

ber will also have an internal random mobility within the scope of a group. The
mobility speeds of these groups are randomly selected between the configured
minimum and maximum mobility speeds. One can also define multiple classes
of mobile nodes, such as pedestrians, cars, UGVs, and UAVs, etc. Each class of
nodes has different requirements: such as moving speed etc. In such cases, only
nodes belonging to the same class can merge into a group.

The proposed VT model is also capable to model randomly and individu-
ally moving nodes as well as static nodes (such as sensors). Such non-grouped
nodes are not restricted by the switch stations and virtual tracks. Instead, their
movements are modeled as random moves in the whole field.

Fig. 11 illustrates a main idea of the proposed virtual track based group mo-
bility model. In this example, 5 switch stations are randomly placed in the field
connected via 8 virtual tracks with equal track width. Group moving nodes are
moving towards switch stations along the tracks. They split and merge at switch
stations as shown in the figure. The black nodes in Fig. 11 represent the indi-
vidually moving nodes and static nodes. They are placed and move independent
of tracks and switch stations.

The proposed VT mobility model is suitable for both military and urban
environment. In the battlefield, the “switch stations” can be viewed as the gath-
ering points or hot spots of military forces. The virtual tracks are roads or trails
or valleys connecting those hot spots. The troops usually move following the pre-
defined track. In the urban environment, the virtual tracks can be viewed as the
streets. The switch stations are then the intersections of the streets. In a subur-
ban scenario, the virtual tracks can represent the highways. The switch stations
are then viewed as the inter-sections of the highway. The mobile nodes are then
the cars running on the highway (e.g. under the constraint of the tracks). The
convoys of cars on the highway can only split at the intersections.

Groups split and merge happen at the switch stations. Each group is defined
with a group stability threshold value. When at the switch stations, each node
in the group will check whether its stability value is beyond its group stability
threshold value. If it is true, this node will choose a different track from its
group. A group split happens. When several groups arrive at the same station
and select the same track for the next movement, naturally, they will be merged
into one bigger group.

96 M. Gerla et al.

Simulation experiments show that the performance is quite different under
the track model and random waypoint mobility models. The virtual track model
has better connectivity within groups and is less prone to geographic separa-
tion, route breakage and packet loss. But the track model has less radio space
resource. The nodes are forced to share a restricted space and need a longer
path to route data packets in the track model. There are more contention, colli-
sions and congestion among nodes moving restriced in virtual tracks. The above
constraints lead to performance degradation in the track based group mobility
model. In contrast, individual randomly roaming nodes enjoy shorter paths and
lower contention, which gives the random waypoint model a better performance.

From the simulations, it is also observed that the performance under the
virtual track group mobility model can be enhanced by the introduction of in-
dividual nodes and static nodes. The reason is that the connectivity among
multiple groups is increased by the roaming nodes outside of the virtual tracks.
The above phenamon has a practical implication: the deployment of “relay”
nodes in a group mobility environment can significantly improve performance,
for example, the Mobile Backbone Overlay, etc.

6 Case Study: Car Torrent - Opportunistic File
Downloading in the Urban Grid

In this section we report a rather extensive case study that illustrates the limits,
trade-offs and opportunities associated with mobility. The application is about
downloading files to a moving car from the Internet. While going through the
details of the “Car Torrent” protocol, the careful reader should notice that the
car to car download, if done efficiently, allows to utilize the unused bandwidth
between hot spots. In fact, this is an excellent example where car mobility
helps expand systems capacity. Without Car Torrent, each car should park at
the “hot spot kiosk” and wait until it gets served. With popular file distribution,
this may easily exceed hot spot capacity!

6.1 Cooperative Downloading in Vehicular Ad-Hoc Wireless
Networks

Future vehicular networks are expected to deploy short range communication
technology for inter-vehicle communication. In addition to vehicle-to-vehicle
communication, users will be interested in accessing the multimedia-rich Inter-
net from within the vehicular network. This motivates a compelling application
of Co-operative Networking in the Vehicular Ad-Hoc network (VANET) where
the Ad Hoc network extends and complements the Internet.

Consider a VANET with short-range communication technology. Given an
average speed of 50 miles per hour and a gateway radio range of 500 meters,
a simple calculation gives a car a transmission window to and from a fixed
Internet access point on the order of a minute at the most. Taking into account
contention from other cars, there may not be enough bandwidth to allow each

Dealing with Node Mobility in Ad Hoc Wireless Network 97

user to download email, songs, as well as browse multimedia rich web-sites in
the short time that they are connected to the gateway. Another practical issue is
that on intercity highways, the gateways will be hosted by gas stations and food
concessions, and thus will be less frequent; say every 5-10 miles. Thus the vehicle
would be connected for about a minute to the Internet before being disconnected
for around 5 minutes. As we shall see, the high mobility of nodes in VANETs
coupled with the intermittent connectivity to the Internet provides an incentive
for individual nodes to cooperate while accessing the Internet to achieve some
level of seamless connectivity.

For the above reasons, an interesting problem is the design of cooperative
protocols to improve client perceived performance of the vehicular network as a
whole. The key contributions of CarTorrent are as follows:

1. A gossip mechanism to propagate content availability information,
2. A proximity driven content selection strategy (which takes into account the

fact that transport-layer throughput degrades over multi-hop wireless con-
nections), and

3. Leveraging the broadcast nature of wireless networks to reduce redundant
message transmission.

6.2 Preliminaries

The network consists of a set of N nodes with same computation and transmis-
sion capabilities, communicating through bidirectional wireless links between
each other. This is the infrastructure-less ad-hoc mode of operation. There are
wireless gateways at regular intervals providing access to the rest of the Inter-
net using infrastructure support (either wired or multi-hop wireless). A unicast
routing protocol is available to support packet transmissions between the net-
work nodes. Nodes may or may not run the peer-to-peer application protocol.
Nodes use TCP for reliable transfer of data and UDP for dissemination of gossip
messages for content availability. The data unit for the swarming protocol is a
chunk. That is, the content is broken up into equal sized chunks each with their
unique identity. These chunks are shared and transferred among the peers. The
terms chunks and pieces are used interchangeably throughout this article and
have the same meaning. The problem is to design an application level protocol
for vehicular ad hoc networks that disseminates data over this network in an
efficient and scalable fashion and improves client perceived performance in the
presence of transient connectivity.

We propose CarTorrent which builds on the fundamental mechanisms of
partial downloading and sharing of content in BitTorrent but adapts to the
wireless scenario by using different mechanisms for peer discovery, selection and
content delivery.

6.3 The Protocol

CarTorrent has the same generic structure of any swarming protocol. Peers
downloading a file form a mesh and exchange pieces of the file amongst them-

98 M. Gerla et al.

Fig. 12. Evolution of a file in a node using the SPAWN protocol. (1) A car arrives

in the range of a gateway, (2) initiates a download (3) downloads a piece of the file.

(4) After getting out of range, (5) starts to gossip with its neighbors about content

availability and (6) exchanges pieces of the file, thereby getting a larger portion of the

file as opposed to waiting for the next gateway to resume the download

selves. However the wireless setting of VANETs, characterized by limited capac-
ity, intermittent connectivity and high degree of churn in nodes (cars) requires
it to adapt in specific ways. Fig. 12 and the pseudo-code describe the basic
operation of the CarTorrent protocol.

There are several components to the operation of the CarTorrent protocol
like Peer Discovery, Peer and Content Selection, and Content Discovery and
Selection.

6.4 Peer Discovery

When a new car enters the vehicular network (such as entering a freeway or a
section of freeway with access points), it requests the Gateway for the particular
file. If the Gateway has the file in its cache, it starts uploading a chunk to the
node. Decision policies with respect to chunk choice are discussed later. The node
starts downloading chunks from the Gateway while it is in range. The Gateway
also bootstraps it with a list of the last known peers (cars) who requested for
the same file. Thus the car has an idea of how popular the file is and how likely
it is to benefit from cooperative strategies.

The centralized approach to peer discovery in BitTorrent has several disad-
vantages (beyond the most obvious disadvantage of having a central point of
failure). In our scenario, the Gateway can only bootstrap an incoming peer with
the last few peers that passed by and were interested in the same file. This
set is too small for efficient sharing/downloading. We propose a decentralized
mechanism for peer discovery to be carried out en route. We utilize the broad-
cast medium of the wireless channel to gossip information about the content
availability at neighbors.

Dealing with Node Mobility in Ad Hoc Wireless Network 99

In CarTorrent, the centralized approach and the gossiping mechanism can
be used in conjunction to construct the mesh of peers and update connectivity
information continuously.

Gossip is the mechanism used to advertise the chunks that a particular peer
possesses. A Gossip Message contains information to identify the file being dis-
tributed by the Gateway, and representing the list of chunks that the originator
possesses, a timestamp indicating when it was originated, and a list of node-ids
indicating which nodes processed it along the route. All nodes within range will
hear it and process it depending on their type. We evaluate various gossiping
schemes which we describe in this section.

Probabilistic Spawn. Spawners not interested in the particular file listen to
gossip messages of that file and forward them with a low probability. In-
terested Spawners listen to those gossip messages and forward them with a
higher probability after stamping the route-list of the packet with their own
id. An Interested spawner who is currently downloading a file will generate
Gossip messages on completion of downloading a new piece.

Rate-Limited Spawn. Each Spawner maintains two caches, a Non-Interested
cache of gossip messages about files that it is not interested in, and an In-
terested cache. Periodically, gossip messages are picked up from one of the
caches and re-broadcasted (without updating the origination time-stamp).
Interested cache messages are selected at a higher frequency. The decision
about which message to select from a particular cache can be made in dif-
ferent ways.

1. Rate-Limited-Recent Spawn: The gossip message with the most re-
cent origination time-stamp is forwarded.

2. Rate-Limited-Random Spawn: The gossip message is selected at
random from the relevant table.

6.5 Peer and Content Selection

TCP connections spanning fewer hops perform better in multi-hop wireless net-
works. To that end, CarTorrent does some intelligent Peer Selection based on
the distance of the peer possessing a certain piece it intends to download. This
information is gathered from the gossip messages. One could also gather this
information from GPS enabled traffic-safety messages that are likely to become
”standard” applications running on vehicles in the future. However we decided
to keep our “inference” methodology independent of other applications that may
co-exist on the same node.

We introduce a proximity-driven piece selection strategy. It uses several dis-
tinct strategies to choose which piece to download, based on how much has been
downloaded already. Selecting pieces to download in an order that reduces con-
tention at the peer serving the piece has a definite impact on performance as
observed earlier. We employ several strategies that might perform better in the
wireless setting. We estimate proximity based on hop-count. Other approaches to
estimate proximity can be using ping messages to measure round-trip times, how-
ever this approach inadvertently introduces more delay and message overhead.

100 M. Gerla et al.

Our hop-count based estimate performs well in a mobile wireless scenario. By
bringing proximity awareness to content selection, users will experience seamless
downloads. We refer the interested reader to a more detailed paper [31].

6.6 Design Rationale

It has been argued that the key deciding factor to whether a large ad hoc net-
work is feasible is the locality of traffic. The effect of traffic locality determines
to a large extent the scalability of per node capacity. CarTorrent tries to min-
imize the peer-side wall clock time taken to download a large file. CarTorrent
like all swarming protocols is motivated by the fact that for popular files, the
content distributor becomes the bottleneck as far as bandwidth and process-
ing is concerned while the downloaders have ample spare capacity. In vehicular
networks this problem is further exacerbated due to the intermittent and short-
lived connectivity to the infrastructure. This form of cooperative data transfer
encourages locality in network traffic and consequently scales while at the same
time providing extended perceived connectivity. We prove it more formally using
simulation and analysis in [31].

6.7 Simulation

In this section we describe the simulations we performed to evaluate the gossip
schemes proposed. We implemented the gossip schemes in Nab a network simu-
lator written in Ocaml. Nab [32] is a fast (For example, a 100 node simulation
run for 300 simulated seconds completes in 4 minutes), flexible and scalable sim-
ulator for ad-hoc networks. We incorporated our mobility model, and a simple
traffic model into the simulator. The car arrival process at the access point fol-
lows a poisson distribution with the average interarrival time varying from 0.5
to 4 seconds. We consider only one direction of vehicle motion in the highway.
The peer group is maintained among cars driving in the same direction. When
a car comes within range of the gateway, it starts downloading random pieces of
the file. The tracker running on the gateway bootstraps the car with a set of 6
peers who last crossed that gateway and were interested in the same file. Each
car possesses an initial speed which is varied at random by a small amount every
5 seconds. Cars maintain the same direction throughout and are not affected by
the speeds of cars around them. The simulation parameters are as follows: File
Size is 5MB, the piece size is 64KB and the velocity varies from 40-80mph.

We used a simplified version of the 802.11 DCF protocol implemented in the
NAB simulator. In particular, the gossip messages are broadcast in the CSMA
mode of 802.11. At the network layer we used AODV (Ad-Hoc On-Demand Dis-
tance Vector Routing). There are other on demand routing protocols such as
DSR (Dynamic Source Routing) which can be potentially used in Vehicular Ad-
Hoc Networks. Moreover, proactive routing protocols (e.g. OLSR) could also be
used. The optimal choice of routing scheme is clearly an important issue. How-
ever since the focus of this paper is to evaluate application layer strategies, we
will keep our study routing protocol agnostic. Leveraging routing protocol spe-

Dealing with Node Mobility in Ad Hoc Wireless Network 101

 0.1

 1

 10

 100

 1 10 100 1000

E
xp

ec
te

d
H

op
C

ou
nt

Node Density

Velocity=10
Velocity=25
Velocity=35
Velocity=45
Velocity=50

Fig. 13. Impact of Average Velocity on

the Expected # of Application Hops

needed to find a peer, with varying node

densities

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 10 100 1000

E
xp

ec
te

d
H

op
C

ou
nt

Node Density

Popularity=0.4
Popularity=0.6
Popularity=0.8
Popularity=1.0

Fig. 14. Impact of Popularity of the

File on the Expected # of Application

Hops needed to find a peer with the file,

with varying node densities

cific messages(for instance coupling our gossip messages with RREQ messages
for efficiency purposes is part of continuing research effort). For channel data
transfer rate we assume the typical 802.11a data transfer rate. This is a con-
servative assumption given that DSRC has a rate varying from 6-27Mbps. We
are interested in the efficiency of the gossip schemes, the message overhead each
scheme introduces. We analyze the impact of each of the simulation and traffic
model parameters on the performance of the gossip schemes.

6.8 Analysis of Gossip Schemes

There are essentially three characteristics which we observe while evaluating the
gossip mechanisms: (a) Good Peer Set Length: “Good Peer” is defined as the
set of peers that are within k hops of a particular node. In all our simulations
we set k to be 3. (b) Local File Downloaded (c) Peer-Space File Downloaded:
the total fraction of the file that is present at a node and its Peer-List nodes.

We are interested in the Peer-Space File Evolution since this is the upper
bound for the achievable fraction of the file for a particular car at a particular
instant. The number of Good Peers in the Peer-List is a measure of the locality

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

N
um

be
r

of
 G

oo
d

P
ee

rs

Time (sec)

No Gossip
Prob Gossip

Rate-lim-Rand Gossip
Rate-lim-Time Gossip

Fig. 15. Number of Good Peers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

Lo
ca

l F
ile

 C
hu

nk
-c

ou
nt

Time (sec)

No Gossip
Prob Gossip

Rate-lim-Rand Gossip
Rate-lim-Time Gossip

Fig. 16. Local File-Chunk Evolution

102 M. Gerla et al.

awareness of the peer discovery scheme. Figure 15 shows the evolution of the good
peer list with the different gossip schemes at a typical node. The performance of
a swarming protocol without any gossip clearly falls off as the peer starts moving
away from the gateway. The various gossip schemes perform the same as far as
the good peer set is concerned. The local File Evolution shown in Figure 16 for
different schemes supports the intuition that gossip will help in retrieving more
pieces of the file. The Peer-Space File Evolution in Figure 18 depicts that the
gossip does enable robust peer discovery in the presence of high churn of peers.

6.9 Message Overhead

The advantages of gossip are clearly visible in the simulation results we pre-
sented. A natural question to ask is what is the cost of this robustness and
location awareness? We ran simulations to analyze the Message Overhead of
each of the gossip schemes. One of the simulation parameters that would have
an impact on the overhead is the Forwarding Interval of the gossip messages.
Figures 17 and 19 show that by varying the forwarding interval the overhead re-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25 30

M
es

sa
ge

 O
ve

rh
ea

d
pe

r
no

de
 p

er
 s

ec

Forwarding Interval (sec)

No Gossip
Prob Gossip

Rate-lim-rand
Rate-lim-time

Fig. 17. Message Overhead with For-

warding Interval

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

P
ee

rS
pa

ce
 F

ile
 C

hu
nk

-c
ou

nt

Time (sec)

No Gossip
Prob Gossip

Rate-lim-Rand Gossip
Rate-lim-Time Gossip

Fig. 18. Peer-Space File-Chunk Evolu-

tion

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

Lo
ca

l F
ile

 C
hu

nk
-c

ou
nt

Time (sec)

Rate-lim-Rand Gossip, Fwd-int=1.0
Rate-lim-Rand Gossip, Fwd-int=5.0

Rate-lim-Rand Gossip, Fwd-int=10.0
Rate-lim-Rand Gossip, Fwd-int=15.0

Fig. 19. Effect of Forwarding Interval

on Chunk Evolution

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
ta

ke
n

to
 D

ow
nl

oa
d

w
ho

le
 fi

le
 (

se
c)

Cars ordered according to arrival

First Available
Rarest Closest

Rarest First

Fig. 20. Different PieceSelection Strat

egies

-

Dealing with Node Mobility in Ad Hoc Wireless Network 103

duces considerably while still keeping the local File- Chunk evolution relatively
stable. For our simulation runs, a forwarding interval of 1 second provided low
message overhead and decent evolution rate.

6.10 Piece Selection Strategy

We experimented with three different piece selection strategies: First Available,
Rarest First and Rarest Closest. First Available tries to fill the first empty chunk
in the bit-field that can be filled. The search procedure is from low index to
high, so lower index bitfields get filled up faster. Such a strategy is useful for
files which have partial content usefulness. Some Mpeg files will play parts of
the file if you have the partial file, so in these cases it would be advantageous to
assemble the initial parts of the file first. Rarest First is the BitTorrent policy of
searching for the rarest bit-field in your peerlist and downloading it. In wireless
networks this could suffer from problems such as trying to download a rare piece
from someone quite far away, while a slightly less rare piece is located very
close to you. Connections to far away hosts are likely be unstable and lossy so
we experiment with a variation of the rarest first scheme called Rarest Closest
which weighs the rare pieces based on the distance to the closest peer who has
that piece. Rare pieces which are situated closer to the node are preferred.

A node can guess the distance of a particular peer by looking at the gossip
message of the peer, and calculating the number of nodes which have stamped
the packet from the relevant field. Figure 20 shows the experienced download
times for the three strategies; it is clear that Rarest Closest consistently gives
shorter download times than Rarest First. First Available does the worst since
it encourages determinism and reduces the entropy of the system.

6.11 Popularity Index

One of the critical factors in determining the download time of a file is its
popularity. We varied the popularity index of the file (the percentage of cars
that are interested in this file) from 20% to 80%. Figure 21 shows the percentage
of the file that is downloaded by the cars in the allotted 300 seconds time. It is

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
er

ce
nt

ag
e

of
 F

ile
 d

ow
nl

oa
de

d

Cars ordered according to arrival

Popularity:20%
Popularity:40%
Popularity:60%
Popularity:80%

Fig. 21. Popularity works !

104 M. Gerla et al.

clear that low popularity files are slow to download, however the speed ramps
up pretty fast and gets bottlenecked by the capacity of the wireless channel at
around 60% popularity. From there on, there are always “enough” new chunks
for cars to keep downloading until they finish.

6.12 The Future of VANETs

We looked at vehicular ad-hoc wireless networks and how advances in peer-to-
peer research can be adapted to these settings to improve the perceived through-
put of the network. We gave a brief overview of the product of our research, the
CarTorrent protocol which tries to achieve the design goals of scalability in
wireless networks, improved perceived performance for individual clients using
co-operation in highly mobile scenario. Research in vehicular networks has made
tremendous strides over the past decade. Prominent players like BMW, Daimler-
Chrysler, and Toyota, are looking at this area very carefully to determine the
right mix of ingredients which makes life easier for the driver without taking
away personal control or jeopardizing privacy. Infotainment within the vehicle is
again one of the grey areas, where it is difficult to determine when entertainment
becomes distraction.

We envision the day when you are zipping down the highway listening to your
favorite radio station when you hear a really good song. You hit the download
button on your player. As you pass a gateway, the player initiates a CarTorrent
download of the file. After you cross the gateway, your player starts gossiping
with neighboring cars advertising your interest in the file. You also hear other
cars advertising some pieces and start downloading pieces from them. In about
5-10 minutes, you’ve assembled all the pieces of the file with a combination of
downloading through the gateway and exchanging pieces with your neighboring
cars. From then on, you can keep playing that song until you get it out of
your head. Until that day, research on vehicular networks will continue to strive
towards getting information to the car faster, swifter, and better.

7 Conclusions and Future Trends

In this chapter we have looked at the “mobility attribute” of ad hoc networks
under two different aspects, namely: mobility as an enemy that must be fought,
and; mobility as a friend that can help us design more efficient networks. These
two aspects are often intertwined, as shown in the Car Torrent case study. The
exploitation of mobility to assist routing via epidemic dissemination and the use
of “data mules” to help with long lasting disconnections are very novel, and
perhaps a bit “controversial” concepts. The epidemic dissemination in partic-
ular requires the willingness of third parties to help as store and forwarders.
Looking into the future, as ad hoc networks will move from battlefield to com-
mercial scenarios, we will witness a shift from large scale, reliable, structured,
preplanned operations to smaller scale, spontaneous, casual interaction between
nomadic users. This will lead to an increase in popularity of “opportunistic”,

Dealing with Node Mobility in Ad Hoc Wireless Network 105

epidemic, peer to peer routing and information dissemination schemes. In this
opportunistic, “autonomic” world, it will be indeed essential to deal with mo-
bility - starting with realistic individual and group models of mobility, and also
make any possible effort to harness mobility to advantage. We expect that in fu-
ture ad hoc network studies the mobility “variable” will receive at least as much
attention as other important parameters such as time varying channel charac-
teristics, traffic distribution, node distribution, Quality of Service requirements
and energy constraints.

References

1. Kaplan, E.: Understanding the gps: Principles and applications (1996)

2. Rappaport, T.: Wireless communications: Principles and practice (1995)

3. Mills, D.: Internet time synchronization: the network time protocol. IEEE Trans-
actions on Communications 39 (1991) 1482–1493

4. Su, W.: Motion Prediction in MobileNireless Networks. PhD thesis, UCLA, Com-
puter Science Department (1999)

5. Toh, C.: Associativity-based routing for ad-hoc mobile networks. Wireless Personal
Communications 4 (1997) 103–139

6. Liu, J., Singh, S.: Atcp: Tcp for mobile ad hoc networks. IEEE Journal on Selected
Areas in Communications 19 (2001) 1300–1315

7. Karp, B., Kung, H.T.: Greedy perimeter stateless routing for wireless networks.
In: ACM MobiCom. (2000) 243–254

8. Pei, G., Gerla, M., Chen, T.W.: Fisheye state routing in mobile ad hoc networks.
In: ICDCS Workshop on Wireless Networks and Mobile Computing. (2000)

9. Pei, G., Gerla, M., Chen, T.W.: Fisheye state routing: A routing scheme for ad
hoc wireless networks. In: IEEE ICC. (2000)

10. Kleinrock, L., Stevens, K.: Fisheye: A lenslike computer display transformation.
Technical report, UCLA Computer Science Department (1971)

11. Perkins, C., Bhagwat, P.: Highly dynamic destionation-sequenced distance-vector
routing (dsdv) for mobilie computers. In: ACM SIGCOMM. (1994)

12. Xue, F., Kumar, P.R.: The number of neighbors needed for connectivity of wireless
networks. Wireless Networks 10 (2004)

13. Li, N., Hou, J.C.: Improving connectivity of wireless ad-hoc networks. Technical
Report UIUCDCS-R-2004-2485, UIUC DCS (2004)

14. Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery
in sparse mobile ad hoc networks. In: ACM MobiHoc. (2004)

15. DTNRG: Delay tolerant networking research group. (http://www.dtnrg.org/)

16. DTN: Disruption tolerant networking. (http://www.darpa.mil/ato/solicit/DTN/)

17. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: ACM SIGCOMM. (2001)

18. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In: 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware 2001). (2001)

19. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM.
(2001)

106 M. Gerla et al.

20. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE JSAC 22
(2004)

21. Pei, G., Gerla, M., Hong, X.: Lanmar: Landmark routing for large scale wireless
ad hoc networks with group mobility. In: ACM MobiHoc. (2000)

22. Tsuchiya, P.F.: The landmark hierarchy: a new hierarchy for routing in very large
networks. ACM Computer Communication Review 18 (1988) 35–42

23. Gerla, M., Hong, X., Pei, G.: Landmark routing for large ad hoc wireless networks.
In: IEEE Globecom. (2000)

24. Xu, K., Hong, X., Gerla, M.: Landmark routing in ad hoc networks with mobile
backbones. Journal of Parallel and Distributed Computing (JPDC), Special Issues
on Ad Hoc Networks (2003) 110–123

25. Banerjee, S., Khuller, S.: A clustering scheme for hierarchical control in multi-hop
wireless networks. In: IEEE Infocom. (2001)

26. Sinha, P., Sivakumar, R., Bharghavan, V.: Enhancing ad hoc routing with dynamic
virtual infrastructures. In: IEEE Infocom. (2001)

27. Perkins, C.E.: Ad hoc networking (2001)
28. Basagni, S., Chlamtac, I., Syrotiuk, V.R.: A distance routing effect algorithm for

mobility (dream). In: ACM MobiCom. (1998)
29. Grossglauser, M., Vetterli, M.: Locating nodes with ease: Last encounter routing

in ad hoc networks through mobility diffusion. In: IEEE Infocom. (2003)
30. Zhao, W., Ammar, M.: Proactive routing in highly-partitioned wireless ad hoc

networks. In: 9th IEEE International Workshop on Future Trends of Distributed
Computing Systems. (2003)

31. Nandan, A., Das, S., Pau, G., Sanadidi, M.Y., Gerla, M.: Cooperative download-
ing in vehicular ad-hoc wireless networks. In: Wireless On-Demand Network and
Services. (2005)

32. Ferriere, H.D.: Nab (network in a box). (http://nab.epfl.ch/)

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 107–154, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Performance Analysis of Mobile Systems

Vincenzo Grassi

Dipartimento di Informatica, Sistemi e Produzione,
Università di Roma “Tor Vergata”, Italy
vgrassi@info.uniroma2.it

Abstract. Mobile systems, where both computing nodes and software
components can dynamically change their location, are already a reality, thanks
to technological advances in several related fields. The high variability and
heterogeneity of these systems raises severe performance problems, thus
requiring a careful planning of any performance validation activity concerning
these systems. This paper reviews some approaches that have been proposed to
this end, presenting them within a general framework aimed at supporting a
systematic approach to the validation of non functional attributes. In this
framework we emphasize that one of the key points for the actual and effective
introduction of non-functional attributes validation since the early design
phases is the definition of model-based transformations from design-oriented
models to analysis-oriented models.

1 Introduction

Two kinds of technological advances are having a profound impact on the way
software applications are designed. On one side, advances in wired and wireless
communication technologies are leading to the pervasive deployment of large-scale
and ubiquitous networking infrastructures, providing support for wide area computing,
where application components are spread and cooperate over geographical distance.
On the other side, advances in component miniaturization are leading to the increasing
diffusion of portable computing and communication devices, providing support (in
conjunction with wireless technologies) to mobile computing, where some of the
application components are hosted by mobile devices. As a consequence, the execution
environment of a distributed application is likely to be characterized by a high
dynamicity and variance in both the computing capacity of the hosting nodes, that span
powerful fixed hosts and less powerful portable devices, and in the communication
bandwidth and latency, with the former ranging from tens of Kbps to tens of Mbps,
depending on the type of wireless or wired network [49], and the latter ranging from
negligible to non negligible values in case of geographically distant nodes.

The high variability and heterogeneity of wide area and mobile computing
environments rises problems that could be considered negligible in the local area
environments considered in the past as the usual target for distributed applications. In
particular, it can have a profound impact on the quality of service (e.g. performance
or reliability) experienced by the end users.

108 V. Grassi

The addition of adaptation features to distributed applications can be a viable way
to cope with these problems [24, 29, 36]. In this respect, the technologies,
architectures and methodologies traditionally used to develop distributed applications
in local area environments, usually based on the notion of location transparency, do
not provide an adequate support. On the contrary, location awareness (or, more
generally, context awareness) has been suggested as a more suitable approach to
support since the early design phases the reasoning about possible adaptation
strategies for wide area and mobile computing applications. In particular, explicitly
considering components location at the application level straightforwardly leads to
exploit the location change as a new dimension in the design and implementation of
distributed applications. Indeed, mobile code design paradigms and technologies,
based on the ability of moving code across the nodes of a network, have been
introduced.1 Thanks to the mobility of its components, a distributed application can
adapt to the changing conditions of its environment by, for example, modifying the
load at some of the hosting nodes or the traffic intensity on some network links.

Hence, a wide area or mobile computing application may be generally involved in
two types of mobility: the physical mobility of some of the hosting nodes, and the
virtual mobility of some of its components. We call mobile system any computing
system where at least one of them is present.

Both these kinds of mobility can have a large impact on quality attributes of a
distributed application. In this paper, we focus on attributes related to the application
performance. In this respect, physical mobility can cause a mobile node to connect to
resources with different performance capabilities and possibly belonging to different
administrative domains, with the consequent overhead for access and security
controls. Moreover, a mobile node can enter zones covered by wireless networks with
reduced or intermittent bandwidth, or not covered at all, thus causing variable
communication delays.

On the other hand, using virtual mobility different but functionally equivalent
software architectures can be designed and implemented. For example, remote
resources must no longer be accessed remotely; instead, (part of) the application can
move to use the resources locally. Under the right circumstances, this can reduce both
network traffic and network protocol overhead, so reducing the total amount of work
done by the system, and improving the performance of the entire system. On the other
hand, under the wrong circumstances, the entire system slows down, e.g. because of
excessive migration traffic, or increased load at already congested nodes.

Hence, the validation of mobile systems against specific performance attributes is
necessary, and calls for a careful planning of this activity.

The main goal of this paper is to discuss the performance validation of mobile
systems. Toward this end, we first provide in section 2 some general guidelines for a
systematic approach to the validation of performance (or, more generally, of some
non functional attribute) of a software system. In section 2 we emphasize that one of

1
 Proposed paradigms differ in the definition of the movement “initiator” (code can move
autonomously or upon request) and the type of moving entities (that span code fragments and
whole execution units).

 Performance Analysis of Mobile Systems 109

the key points for the actual and effective introduction of performance validation
since the early design phases, is the definition of model-based transformations from
design-oriented models to analysis-oriented models. Then, the performance validation
of mobile systems will be presented in the next sections as an “instance” of the
general framework outlined in section 2.

In section 3 we discuss the basic elements that characterize the domain of mobile
systems. In section 4 we present modeling frameworks that have been proposed for
mobile system. Then, in section 5, we present transformations from models defined
within these frameworks to suitable analysis models. In both section 4 and 5 we
present a general overview of some proposals that have appeared in the literature, and
then discuss in some detail a particular proposal we have made.

Finally, section 6 concludes the paper and provides hints for future research.

2 Non Functional Requirements Validation

The validation of software systems can be performed versus functional and/or non-
functional requirements (NFR). Approaches basically differ in the two cases, as the
former are statements of services the software system should provide, how it should
react to particular inputs and behave in particular situations (what the system does),
whereas NFR are constraints on the quality of the services offered by the software
system (how the system does what it does, e.g. with which performance or reliability).

It has been widely argued that NFR validation should be performed since the early
design phases, before the system is actually implemented, to provide guidelines for
further design refinements and to reduce the costs of late problem fixing [45, 46]. As
an obvious implication of this argument, NFR validation must be based on predictive
analysis methodologies applied to some suitable system model. In the past, the
construction of such models has been often considered as an “art” that required
special skills. This is at least partially true, but it has not contributed (together with
other reasons dictated by, for example, short time to market) to the acceptance of
NFR validation within the software community, where such skills could be absent. As
a consequence, NFR validation is often neglected in software development.

To get a wider acceptance, we think that it is more convenient to give a definition
of NFR validation as a systematic activity with some clearly identified key steps
(where some “creativity” is of course allowed!), rather than as some unstructured
“artistic” activity.

As a contribution in this direction, we identify as a first step a grid of “dimensions”
along which a NFR validation methodology can be classified, so that any
methodology can be seen as a particular instance within this grid. Then, to give some
guidelines toward a systematic approach to NFR validation, we argue that values
along different dimensions cannot be freely selected, but some dependencies exist
among some of them, that restrict the set of possible “values” and suggest a path to be
followed in selecting those values.

The dimensions along which we classify NFR validation methodologies are as
follows:

110 V. Grassi

system domain (SD) - the relevant characteristics of the system to be analyzed, that
include, for example, its architectural style and its structure (e.g. client-server, peer-
to-peer, ..., local area, wide area, ...);

starting model notation (SMN) - the notation used to express a model of the system at
some stage of its development process (e.g. UML, process algebra, ..) ;

non-functional attribute (NFA) – the non-functional attribute that is concerned with
the set of requirements that the software system must fulfill (e.g., reliability,
performance, safety, etc.);

missing information (MI) – the information that is lacking in the software system
description expressed using the selected SMN, which is rather crucial for the type of
validation that is pursued (e.g., number of invocations of a component within a certain
scenario, mapping of components to platform sites, etc.2);

collection technique (CT) – the technique adopted to collect the missing information
(e.g., prototype execution, retrieving from a repository of projects);

target model notation (TMN) – the notation adopted for representing the model
whose solution provides the non-functional attribute values useful for the validation
task (e.g., Petri Nets, Queuing Networks, etc.);

solution technique (ST) – the technique adopted to process the target model expressed
using the selected TMN, and obtain a numerical solution (e.g., simulation, analytical,
etc.).

Every validation methodology can be reduced to a selection of values along the
above dimensions. For example, in a Bayesian approach to the reliability validation of
some software system whose design is expressed using UML, and where the operational
profile and the failure probabilities are missing, the following values may be selected:

system domain (SD) = “don’t care”;
starting model notation (SMN) = Unified Modeling Language;
non-functional attribute (NFA) = reliability;
missing information (MI) = operational profile, failure probabilities;

collection technique (CT) = repository (operational profile), unit testing (failure
probabilities);
target model notation (TMN) = Bayesian stochastic model;
solution technique (ST) = numerical simulation.

The choice of a value along some dimension is not always independent of the
choices of the other ones. In many cases the domain of a choice is restricted to a
subset of potential values as a consequence of a value selected along a different
dimension. For example, in case a reliability validation has to be performed (i.e.,
NFA=reliability), it is quite inconvenient to choose a Queuing Model as target (i.e.,
TMN=Queueing Model), because queues are suitable to represent delays and
contentions, and they badly work to combine failure probabilities.

2
 Usually the missing information appears (in the whole approach) either as annotations on the
available software system description or as an integration of the description itself (in the latter
case, for example, in the transition from process algebras to stochastic process algebras).

 Performance Analysis of Mobile Systems 111

target model
notation (TMN)

starting model
notation (SMN)

non-funtional
attribute (NF A)

system domain
(SD)

missing information
(MI)

solution technique
(ST)

collection technique
(CT)

Fig. 1. Graph of dependencies among dimensions for NFR validation

In figure 1 we propose a dependency graph, where each node represents one of the
above dimensions. An arrow from node i to node j suggests that the j depends in some
way on i. This means that it would be better choosing the value of j after choosing the
value of i; in other words, the value assigned to i helps the validation team to better
understand which would be the more appropriate choice for j. Hence, this dependency
graph suggests a partial order in the choices that a validation team has to perform in
order to accomplish its validation task. However, we point out that this partial order is
not mandatory, as other considerations could influence the selection of some values.

According to figure 1, the first steps in a validation activity consists quite
obviously in identifying the domain of interest (SD) for the validation activity itself
and the type of validation to perform (NFA).

Then, the selection of SMN should be driven by SD, as the SMN should be
suitable to express the relevant aspects of the system to be analyzed, e.g. its
architectural style.

The value of MI depends on SMN, SD and NFA. It depends on NFA since the
information lacking in the system design may heavily differ depending on the type of
non-functional attribute to validate. On the other hand, the dependency from SMN
stems from the consideration that the adopted SMN determines the set of items and
relationships that are available to model the software system, hence determines also
the set of missing items and relationships, depending on the type of validation to
perform. Finally, the dependency from SD takes into account the fact that the
architectural style may help to determine the missing information.

The dependency between NFA and TMN derives from the consideration that the
same non-functional attribute can be validated using different types of model (e.g.
Petri Nets and Queuing Models are suitable models for performance evaluation), but
the complexity of the validation process may heavily change by using a notation
rather than another, and this depends on the specific non-functional requirements
under validation.

Finally, ST depends on TMN since a certain type of model can be solved (almost
in all cases) by different techniques with different solution process complexity.
Therefore, it is generally better to delay the choice of a solution technique after the
selection of the model notation, in order to be able to use the technique with lowest
complexity. Analogously, CT depends on MI, as if we know what type of information
has to be collected then we can devise a much effective technique for the CT task.

112 V. Grassi

For any pair of dimensions without a connecting path in the graph of figure 1, no
evident dependency occurs, namely their values can be concurrently selected because
one value does not bring any information on the other one. For example, there is no
dependency between CT and TMN, as the way we collect the missing information is
not affected by the type of target model notation, which affects, instead, the way we
represent that information.

The sort of “task graph” depicted in figure 1 provides suggestions for a more
systematic approach to NFR validation, but this is likely to be not enough to make
NFR validation fully accepted within the software design process. In particular, once
a specific SMN and TMN have been selected, a further problem to be faced is the
transition from a design-oriented model (i.e. a model produced during the “normal”
development process) expressed using SMN to a representative analysis-oriented
model (i.e. a model that lends itself to the application of some analysis methodology
[22]) expressed using TMN. This task is not trivial at all and could require some
specific expertise.

Hence, it seems reasonable that any approach to the validation of NFR should also
require a minimal effort to the design team to conduct predictive analysis of non-
functional attributes. This requirement calls for the development of model
transformation tools, that take as input some design-oriented model of the software
system and (almost) automatically generate an analysis-oriented model. In this way,
the specific expertise needed to build an analysis-oriented model is embedded within
the transformation tool, and only a limited knowledge about this point is required to?
the design team.

The general problem of defining model transformations and designing tools that
implement them is considered in the framework of Model Driven Development
(MDD) [30, 32, 33]. For the particular type of model transformations we are
interested in here, a thorough review of approaches to the generation of performance
models from design models can be found in [44]. These approaches differ in the
assumed notation for the design-oriented model (SMN in our classification), and in
the generated analysis-oriented models (TMN), spanning queueing networks, Petri
nets, Markov processes, simulation models. Hence, for what concerns the selection of
a SMN, a further criterion that could drive this selection, besides being suitable for
the domain of interest, is the availability of a transformation methodology toward the
selected TMN.

However, in the perspective of a smooth integration of NFR validation within the
software design process, we point out that suitability for the domain of interest and
availability of a transformation methodology towards some TMN are not the only
criteria to be considered for the selection of a SMN. A further criterion should be
based on the consideration of a minimal affection on the software notation and the
software process usually adopted by a design team. From this viewpoint, the selection
of SMN could also be driven by the expertise in some particular modeling notation
accumulated in the past by the design and validation team.

The track of this paper is to look, within the framework introduced in this section,
at the software validation approaches having SD in the domain of mobile systems and
NFA in the domain of performance. Starting from this selection for SD and NFA, we

 Performance Analysis of Mobile Systems 113

will only discuss issues concerning the definition of a suitable SMN and of the related
MI needed to support performance analysis, and the transformation to some suitable
TMN. We will not discuss issues concerning the ST and CT dimensions.

3 The Mobile Systems Domain (SD = “Mobile System”)

In this section we discuss the relevant aspects that characterize a mobile system, to
provide a reference framework for the modeling approaches that will be reviewed in
section 4.

As already discussed in the introduction, what basically characterizes a mobile
system is the presence of virtual or physical mobile entities.

Virtual mobile entities can be, in principle, any kind of software artifact (run time
entity), intended as the manifestation of a software component (design time entity).
On the other hand, the physical mobile entities we are basically interested in are
computing nodes (and the execution environments inside them). However, we could
also be interested in other kinds of physical mobile entities, whose movement causes
the actual mobility of computing nodes (e.g. vehicles, persons).

To reason about the movement of mobile entities, we have to define some
underlying concept of location. Basically, the location of a virtual entity is the
computing node that hosts it, while the location of a physical entity is some point in a
physical (2- or 3-dimensional) space. Hence, virtual and physical entities move in a
discrete and continuous space of locations, respectively. However, for what concerns
physical entities, we could not be interested in such a fine-grained notion of location.
Often, we are interested in a coarser notion, where the location of a physical entity is
defined as a region of the physical space delimited in some suitable way (e.g. a room
in a building, delimited by its walls; a cell in a cellular system, delimited by the
coverage range of its antenna). As a consequence, discrete spaces of locations could
be suitable to describe the movement of both physical and virtual entities.

Given a space of locations, movement is usually not free within it, but is generally
constrained by the existence of a channel between the location where the moving
entity currently is and the destination location. This concept of channel is very
generic, and applies to both virtual and physical movements. In the virtual case, it
could correspond to a network link between two workstations, that allows software
components located at one of them to migrate towards the other workstation. In the
physical case, it could correspond to a corridor between two rooms, that allows a
mobile device (the person holding it) to move from a room to the other.

Finally, nesting relationships may exist among both virtual and physical entities.
A virtual entity may be embedded within another virtual entity (e.g. a class within a
class closure). A physical entity may be nested within another physical entity (e.g. a
portable computing device within a person holding it, a person within some vehicle).
Moreover, at the boundary between the virtual and physical “worlds”, the notion
itself of location of a virtual entity could be thought of as a nesting relationship
between that entity and the computing node (execution environment) it is directly
allocated to.

114 V. Grassi

Nesting relationships have a twofold implication. They introduce the need of a
hierarchical concept of location (for example, depending on the context, the location
of a software sub-component could be better defined as the component it is part of, the
computing node where that component is allocated, or the physical space region
where that node presently resides). Moreover, the movement of some entity indirectly
causes the movement of all the entities that are nested within it.

Up to now we have discussed indifferently of physical and virtual mobility.
However, it could be useful to point out that they play different roles from the
viewpoint of an application designer. Indeed, physical mobility is an environment
feature that is generally out of the control of the designer; in other words, it is a sort of
constraint she has to deal with, to meet the application requirements. On the other
hand, logical mobility is really a tool in her hands, that she can exploit to better adapt
the application to the environment where it will be deployed. In this respect, we point
out that code mobility, as it is intended in this perspective, should not be confused
with the well known concept of process migration, even if the adopted mechanisms to
implement them may be similar. Process migration is a (distributed) OS issue, realized
transparently to the application (usually to get load balancing), and hence does not
represent a tool in the hands of the application designer; on the contrary, code
mobility is intended to bring the ability of changing location under the control of the
designer, so representing a new tool she can exploit to accomplish quality
requirements.

In particular, for what concerns virtual mobility, some basic patterns have been
identified, that can be followed by the application designer to implement some
application level adaptation policy based on code mobility: the Code on Demand
(COD), Remote Evaluation (REV) and Mobile Agent pattern (MA) [13].

The COD and REV patterns can be defined as the “location-aware” extensions of
the basic “location-unaware” client-server (CS) interaction pattern. Indeed, in the CS
case, we have some software component that invokes an operation implemented by
some other software artifact; the operation result is then sent back to the caller. This
interaction pattern is realized independently of the location of the two partners, that
does not change during the interaction.

In the COD case, upon invocation of the operation, if the artifact that implements
the operation is remotely located, a copy of it is first moved to the caller location and
then executed.

Conversely, in the REV case, upon invocation of a locally available software
artifact, a copy of it is first sent to a specified remote location, where it is executed.

In both the COD and REV patterns only “passive” code is sent to some location.
On the contrary, in the MA pattern an active software artifact moves together with its
state, at some point of its execution, to a different location where it will resume its
execution. The state which is moved may consists of internal variables only (weak
mobility) or it may include also the program counter and execution stack (strong
mobility). In the latter case the moving artifact can resume its execution from the
exact point where it was stopped, while in the former case some convention must be
established about the execution resumption point.

 Performance Analysis of Mobile Systems 115

To conclude this section, we note that, for a computing system, the movement of
some of its parts (be they virtual or physical) is not relevant per se, but because it can
change their context, i.e. the type, quality and number of resources (e.g. computing
devices, communication links, access rights) that are available at the location where
they reside. These context changes can have on impact on the functions the system
can perform and on their quality.

In this respect, we should note that the context can change not only along a spatial
dimension (because of different available resources at different locations) but also
along a temporal dimension independently of any movement (because of changes in
the available resources at the same location). Examples of the latter case are a wireless
link with variable bandwidth because of interference, or a computing device that is
switched on and off by its owner.

As a consequence, we may also consider the mobile systems as a special case of
more general variable context systems, where mobility is only one of the possible
causes of context variability. According to this different perspective, one could argue
that we should focus directly on context changes rather than viewing them as a
consequence of mobility, to deal uniformly with all the types of variable context
systems.

4 Mobile Systems Models (hich SMN hen SD = “Mobile
System”?)

In this section we review some modeling frameworks that have been proposed for
mobile systems. This review does not intend to be complete, but we hope that it is
representative of approaches that have been and are currently pursued in this field. In
this respect, we point out that we are only interested in the modeling of mobility from
an “application level” perspective, since our viewpoint is that of the software
designer. We will not discuss issues concerning the modeling of “low level” mobility
aspects (e.g. routing protocols, link layer communication).

The considerations made in section 3 can be used to discuss the merits of each
SMN that will be reviewed. To summarize those considerations, a SMN for mobile
systems should be able to deal with space of locations that are generally discrete and
hierarchical (with, in principle, no limit to the depth of the hierarchy), where
movement is allowed only among locations connected by suitable channels.
Moreover, it should be able to represent both “involuntary” (physical) and “voluntary”
(virtual) mobility. In the latter case, it should provide support for the modeling of
“standard” mobility patterns (COD, REV, MA).

However, besides the ability of representing the various facets of a mobile system,
a SMN should also be judged with respect to the issues raised in section 2, that can be
summarized around the concept of “usability”. Usability itself has several facets. One
of them is related with the degree of integration of a given SMN for mobile systems
with other notations used by a design team. Another one is related with
“decomposability” issues in system design (also known as “separation of concerns”),
i.e. the offered support for the modeling of different views of a system that are to

W W

116 V. Grassi

some extent independent of each other. An example of this in the case of mobile
systems is the separation that exists between the core “business logic” implemented
by the system, and its mobility characteristics, which are often largely independent of
each other (even if together contribute, for example, to its performance properties). A
SMN that allows to separately modeling, as long as possible, these two aspects is
likely to be more usable, as it may allow the designer to easily change a part of the
design model (for example the one concerning the system mobility) without touching
the other one. This could facilitate, for example, “what-if” experiments about the
impact of different types of mobility (both physical and virtual) on the overall system
performance.

We will classify the reviewed proposals into two broad classes: those based on
formal modeling notations, and those based on somewhat less formal notations that
are more used in the practice of system design. In the former case we will focus in
particular on some proposals based on the use of suitable process algebras, since this
is the kind of notation for which we are aware of an explicit translation methodology
towards some TMN. However, we will also briefly mention other formal modeling
proposals.

In the latter case, we will focus on proposals based on the Unified Modeling
Language (UML) which is a de-facto standard notation in the industrial software
development process.

Example 1. To illustrate some of the reviewed modeling proposals, we will use a
simple application example based on a travel agency scenario, where a travel agency
periodically contacts K airlines to get information about the cost of a ticket for some
itinerary. The agency exchanges a sequence of N messages with each airline, to
collect the required information. Using a traditional client-server approach, this means
that the agency should explicitly establish N RPCs with each airline to complete the
task. On the other hand, with a REV approach, the agency could send a code
encompassing all the N messages along with some gluing operations, to be executed
by each airline, getting only the final reply. Within a COD approach, we could think
that the agency makes an overall request to each company, and that it is the
responsibility of each airline to possibly get somewhere the needed code to fulfill the
request. Finally, in an MA approach, the agency could deliver an agent that travels
along all the K airlines getting locally the information, and then reports it back to the
agency. Note that only virtual mobility is taken into consideration, but we think that it
is sufficient for the purposes of this example. EndOfExample1

4.1 Formal SMN for Mobile Systems: Process Algebras Based Notations

The modeling approaches considered in this section are based on the selection of a
process algebra as SMN. Process algebras are well-known formalisms for the
modelling and analysis of parallel and distributed systems. What makes them
attractive as SMN for the evaluation of large and complex systems, are mainly their
compositional and abstraction features, that facilitate building complex system models
from smaller ones. Moreover, they are equipped with a formal semantics, that allows a
non ambiguous system specification, and a calculus that allows to prove rigorously

 Performance Analysis of Mobile Systems 117

whether some functional properties hold. We defer to the vast available literature for
details about the general characteristics of these formalisms (e.g., [35]), and focus in
this section on process algebras for the modeling of mobile software architectures. We
only provide their (partial) formal syntax and informal descriptions of the
corresponding semantics, aimed at illustrating the salient features of different
approaches to formal modeling of mobile systems.

A process algebra is a formal language, whose syntax basically appears like this:

P ::= 0 | π.P | P + P | P || P | … 3

where 0 denotes the “null” (terminated) process that cannot perform any action, + and
|| denote process composition by non-deterministic alternative or parallelism,
respectively, and π.P denotes the process that performs action π Act, and then
behaves as P (where Act is a set of possible actions). Process algebras for mobility
modeling basically differ in the set Act of actions the defined processes can perform.
We group them into two sections, based on the way used to model the location of
components.

Notations Without Explicit Location Specification. Algebras listed in this section
can be considered as a direct derivation from CCS-like algebras [34], and are
characterized by the lack of any explicit modeling of the location concept. What they
model instead is a change in the links that connect processes, and that can be used to
make them communicate to each other. Note that a change in the communication links
“seen” by a process can be both the consequence of some kind of mobility (that leads
the entity modeled by that process to a location characterized by different
communication channels) or of other events (e.g. an interference that changes the
quality of a channel). Hence, according to the considerations made at the end of
section 3, these process algebras model variable context systems rather than just
mobile systems, albeit with a notion of context restricted to communication channels
only.

Before reviewing them, we briefly illustrate a basic CCS-like algebra. In this case,
we have π {τi (i = 1, 2, …), inx, outx}, where τi denotes a “silent” (internal) action
of a process4, while in and out are input and output actions, respectively, along the
link named x, that can be used to synchronize a process with another parallel process
that executes their output or input counterparts along the same link. For example, if
two processes are specified as follows:

P := outa.P1 Q := ina.Q1

from these definitions we get that P || Q evolves into P1 || Q1, that is, processes P and
Q synchronize (i.e., wait for each other) thanks to a communication along link a, and
then prosecute in parallel (possibly independently of each other, if no other
synchronizing communication takes place in their following behavior).

3 Note that, for the sake of simplicity, this syntax is incomplete, since we are omitting

constructs to define abstraction mechanisms, or recursive behavior, etc.
4 Subscript i is used to distinguish different internal actions, which is useful for modeling

purposes.

118 V. Grassi

π-calculus [34]. This algebra, besides synchronization between parallel processes,
allows also link names communication, so that we can change the links a process uses
to communicate with other processes. The possible system actions are π {τi (i = 1,
2, …), inx, outx, inx(y), outx(Y)}, where in addition to the above definitions, Y (y) is a
“link name” (link variable), sent (received) over the link named x. For example, with
the following specifications:

M := outa(b).outa(c).M Q := ina(y).outy.Q
P1 := inb.P1 P2 := inc.P2

we get that M || Q || P1 || P2 evolves as a system where Q alternatively sees (and
communicates with) P1 and P2, according to the link name sent to it by M along the
channel a. Focusing on mobility modeling, this behavior could model a mobility
pattern of Q that brings it alternatively close to P1 and P2. The same mechanism (in
particular, the definition of M, that acts as a sort of controller of the mobility of Q) can
be used to model both physical and virtual mobility. What changes is that in the
former case the sending of a new link name models the effect of some physically
observable mobility behavior that is out of the control of the system designer, while in
the latter it is meant to model a mobility behavior which is under the control of the
designer.

HOπ-calculus [43]. Besides the operations of π-calculus, this algebra allows also the
communication of process names, so that we can change the behavior of the receiving
process. The possible system actions are again π {τi (i = 1, 2, …), inx, outx, inx(y),
outx(Y))}, but, in addition to the above definitions, Y (y) may also be a “process
name” (process variable) besides a link name (variable), sent (received) over the link
named x. For example, with the following specifications:

M := outa(b).outa(c).M Q := ina(y).outy(R).Q R := ...
P1 := inb(w).w.P1 P2 := inc(z).z.P2

we get that M || Q || P1 || P2 evolves as a system where process R is executed
alternatively within P1 and |P2. With respect to π-calculus, the extension introduced in
the HOπ-calculus allows a more direct mobility modeling (someone could argue: a
more “intuitive” modeling): some processes (with each process seeing different links)
could play the role of “locations”, so that sending a process to one of this special
processes can be used to model its movement to that location.

Example 25. Let us consider the system of example 1 in the case of K=2 airlines, with
Ai and ai (i=1, 2) denoting an airline and the channel used to communicate with it, C
denoting the overall code corresponding to the N “low level” interactions, Ri the
overall response collected at airline Ai, and SelectBest the operations to select the best
ticket offer. Using HOπ-calculus, this application could be modeled as follows, in the
case of the REV pattern (where Sys models the overall application):

TravAg := outa1(C).ina1(x).outa2(C).ina2(x).SelectBest.TravAg
Ai := inai(z).z.outai(Ri).Ai

5 Adapted from [37].

 Performance Analysis of Mobile Systems 119

SelectBest := ...
Sys := TravAg || A1 || A2

Note that in this example the Ai’s play the role of location processes.
EndOfExample2.

Notations with Explicit Location Specification. The above approaches suggest as
SMN for the modeling of mobile systems a process algebra where the location of a
process is indirectly defined in terms of its connectivity, i.e. the link names it sees and
the identity of the processes it can communicate with at a given instant of time using
those links; hence, the location of a process can be changed by changing the links it
sees (by sending it new link names, as in the π-calculus, or by sending the process
itself, i.e., its name, as in the HOπ-calculus to a receiving process that has a different
location (again, defined by its connectivity)). Other process algebras approaches have
been defined where the location of processes is directly and explicitly defined, giving
it a first class status, so allowing for a more direct modeling and reasoning about
problems related to locations, such as access rights or code mobility, thus making
these algebras somewhat more appealing as SMN for mobile systems. Two of these
approaches are the Ambient and the KLAIM calculus. In the following we briefly
outline some of their features. As before, the presentation is far from complete, with
the main goal of only giving some flavor of the way they adopt to model process
location and mobility in a process algebras setting.

Ambient calculus [8]. In this formalism the concept of ambient is added to the basic
constructs for processes definition and composition described above. An ambient has
a name that specifies its identity, and can be thought of as a sort of boundary that
encloses a set of running processes. Ambients, denoted as n[P], where n is the ambient
name and P is the enclosed process, can be entered, exited or opened (i.e., dissolved)
by appropriate operations executed by a process, so allowing to model movement as
the crossing of ambient boundaries. Ambients are hierarchically nested, and a process
can only enter an ambient which is sibling of its ambient in the hierarchy, and can exit
only into the parent ambient of its ambient; hence, moving to a “far” ambient in the
ambients hierarchy requires, in this formalism, the explicit crossing of multiple
ambients. The mobility operations for an ambient n[.] are denoted by inambn,
outambn, openn, respectively6. In general, a process cannot forge them by itself, but
receives them thanks to the communication operations in and out. Hence, a process
receiving one of such operations through a communication actually receives a
capability for it, being allowed to execute the corresponding operation on the named
ambient. The (partial) formal syntax of this algebra is then as follows:

P ::= 0 | π.P | P + P | P || P | n[P] | …

with π {τi (i = 1, 2, …), in(x), out(M), inambn, outambn, openn}, where x is a
variable and M stands for either an ambient name (n), or a capability for an ambient

6
 Note that the ambient operations are named in, out and open in the original paper [8]; we
have renamed them to avoid confusion with the names used in this paper to denote the
mesage passing communication operations.

120 V. Grassi

(either inambn, or outambn, or openn). Communication is restricted to be local, i.e.
only between processes enclosed in the same ambient. Communication between non
local processes requires the definition of some sort of “messenger” agent that
explicitly crosses the required ambient boundaries bringing with itself the information
to be communicated. Alternatively, a process can move itself to the ambient of its
partner before (locally) communicating with it. In both cases, the messenger or the
moving process must possess the needed capabilities.

KLAIM (Kernel Language for Agents Interaction and Mobility) [11]. This formalism
allows to define a net of locations that are basically not nested into each other, with
direct communication possible, in principle, between processes located at any
location, differently from the ambient calculus (anyway, the extension to nested
locations is possible). Another remarkable difference with the ambient calculus, and
with all the previously mentioned algebras, consists in the adoption of a generative
(rather than message passing) style of communication, based on the use of tuple
spaces and the communication primitives of the Linda coordination language [9].
Tuple spaces are linked to locations, and interaction between processes located at
different locations can happen by putting or retrieving the opportune tuple into the
tuple space at a given location. Again, the (partial) formal syntax of this algebra is as
follows:

P ::= 0 | π.P | P + P |P || P | …

with π {τi (i = 1, 2, …), in_t(t)@l, read_t(t)@l, out_t(t)@l, eval_t(t)@l,
newloc(u)}, where the indicated operations are the usual Linda-like operations on a
tuple t, restricted to operate on the tuple space associated to the l location7. Moreover,
the newloc(u) operation allows a process to create a new (initially private) location
that can be accessed through the name u. Note that the fields of a tuple may be either
values, or processes, or localities, or variables of the previous types. This allows a
simple modelling of all the mobile code patterns (namely REV, COD and MA), as
shown in [11].

Example 3. Adopting the same notation of example 2, the travel agency system
adopting the REV pattern can be modeled in KLAIM as follows, where loci denotes
explicitly the location of the Ai airline, and "inforeq" and "inforeply" are keys used for
the tuple matching:

TravAg := out_t([C, "inforeq"])@loc1.in_t([x, "inforeply"])@loc1.
 out_t([C, "inforeq"])@loc2.in_t([x, "inforeply"])@loc2.
 SelectBest.TravAg
Ai := in_t([y, "inforeq"])@self.y.out_t([Ri, "inforeply"])@self.Ai
SelectBest := ...
Sys := TravAg || A1 || A2

EndOfExample3.

7 Note that the tuple operations are named in, out, read and eval in the original paper [11]; we

have renamed them to avoid confusion with the names used in this paper to denote the
message passing communication operations.

 Performance Analysis of Mobile Systems 121

Other Formal Notations. Besides the notations reviewed above, other notations for
mobility modeling (and formal verification of functional requirements for mobile
systems) have been proposed, not based on a process algebras framework; examples
are MobileUNITY [41] and Mobadtl [12], both with an explicit notion of location, and
a temporal logic based semantics.

As a general comment about all the formal notations we have reviewed, they are
quite low-level notations, and using them to directly model a system of even average
complexity would be quite cumbersome. Hence their score would be quite low if we
evaluate them on the usability scale. One approach that have been pursued to get a
higher usability consists in using them to provide a foundation to higher level
formalisms, that are closer to the practice of system design. An example of this
approach is the π-ADL language [38] which is built over the π-calculus and HOπ-
calculus and supports the definition of system models following an architecture-based
approach, where a system is modeled in terms of components, connectors and their
composition [3].

Another example is the X-Klaim language [6], whose underlying semantics is
based on the KLAIM calculus, and that supports the implementation of object-
oriented applications with mobile components.

Along a different direction, other approaches have pursued the usability goal
stressing the need of supporting the separation of concerns between the modeling of
location and mobility aspects of a system on one hand, and the modeling of its
location-independent aspects on the other hand, as discussed at the beginning of this
section. An example is the BasicSail calculus [39] that derives from the Ambient
calculus the idea of a hierarchical location space, where each location can be thought
of as a process container, and processes can enter and exit locations following the
hierarchical structure. However, differently from the Ambient calculus, the goal of
BasicSail is to keep independent the modeling of topological variations (i.e. changes
in the process location) from the modeling of the computation performed by the
system. However, to achieve this goal, the resulting calculus is somewhat less
powerful than the Ambient calculus (see [39] for details).

Another example is the CommUnity language [27], that has a Category Theory
theoretical background. Similarly to the π-ADL language briefly reviewed above, also
CommUnity aims at providing support for the modeling of systems following an
architecture-based approach. The specific goal of CommUnity is to extend the
principle of separation of concerns, already pursued by architecture-based approaches
between intra-component behaviors and inter-component interactions, also to location
and mobility aspects. Another noteworthy aspect of CommUnity is the explicit
support it provides for a general notion of context.

4.2 Semi-formal SMN for Mobile Systems: UML Based Notations

SMNs based on process algebras or other types of formal notations support a rigorous
and non ambiguous modeling activity. However, the use of these formal notations
does not have yet gained widespread acceptance in the practice of software
development. On the contrary, a semi-formal notation like the Unified Modeling

122 V. Grassi

Language (UML) [7, 47] lacks some of the formal rigor of the notations considered in
the previous section, but has quickly become a de-facto standard in the industrial
software development process. Some of the reasons for the UML success may be
summarized as follows:

 It allows to embed into the model static and dynamic aspects of the software by
using different diagrams, each representing a different view of the software
system. Each view captures a different set of concerns and aspects regarding the
subject. Therefore it is broadly applicable to different types of domains or subject
areas.

 The same conceptual framework and the same notation can be used from
specification through design to implementation.

 It is widely supported by a broad set of tools. By having a set of tools that support
UML, knowledge may be more readily captured and manipulated to meet an
organization's objectives.

UML consists of two parts: a notation, used to describe a set of diagrams (also
called the syntax of the language and that provides the “tools” to define user level
models) and a metamodel (also called the semantics of the language) that specifies the
abstract integrated semantics of UML modeling concepts. The UML notation
encompasses several kinds of diagrams, most of them belonging to previous
methodologies, that provide specific views of the system. Examples of UML diagrams
are static diagrams, like the Use Case, Class and Object Diagrams, behavioral
diagrams like the Activity and State Diagrams, interaction diagrams like the Sequence
and Collaboration Diagrams, and implementation diagrams like the Deployment
Diagram.

A further reason for the UML success is due to its extensibility mechanisms, that
allow to customize and tailor it to particular system types, domains, and
methods/processes. Extensions can be introduced at two different levels: as
lightweight extensions (based on the profile mechanism) that does not modify the
UML metamodel, and heavyweight extensions, that do modify the metamodel. The
latter kind of extensions allows greater expressive power and flexibility, but they
generally introduce incompatibilities with tools based on the original metamodel, thus
causing usability problems.

UML has recently undergone a complete revision, that has led to the definition of
the UML 2.0 version [47], where some aspects of the previous versions have been
clarified and new diagrams have been included, to better support recent trends in
system design (e.g. component-based design).

UML by itself does provide only a limited support for the modeling of mobile
systems. Hence, suitable customizations of UML have been proposed. We classify
them according to the degree of extension they introduce with respect to the
“standard” UML notation. Some of them cannot be actually defined as UML
extensions, as they only suggest guidelines for using standard diagrams in the
modeling of mobile systems. Others do introduce heavyweight or lightweight
extensions. In the following we briefly review some of these proposals, and then we
illustrate in greater detail one of them in section 4.3.

 Performance Analysis of Mobile Systems 123

Notations Based on the “Standard” UML. The two proposals presented in this
section differ in the type of UML diagrams they suggest to use for the modeling of
mobile systems. For both of them, methodologies have been suggested for the
transformation from the design model to an analysis oriented model. These
methodologies will be presented in section 5.

Merseguer et al. model [31]. This proposal suggests the use of State Diagrams (SD) to
model the internal behavior of each component of a software application, and of
Sequence Diagrams to model interaction scenarios among components. The modeling
of component mobility simply consists in the addition at suitable points of its SD of a
state whose dispatched action (goto action) moves that component to a different
location. Figure 2 depicts the addition of a component movement between the
transition from a state to another state. This way of modeling mobility appears more
oriented to virtual mobility only. Moreover, what seems to be actually modeled is a
MA mobility pattern only. No suggestion about how other patterns could be modeled
is given in [31]. Also the modeling of nested locations is not explicitly discussed.

A

B

A

B

D o : go to

C j s it e

Fig. 2. Adding mobility within a State Diagram

Example 4. Using the notation proposed by Merseguer et al., the travel agency
application with an MA mobility pattern could be modeled as depicted in figures 3
and 4, that show the interaction scenario and the internal behavior of each component,
respectively. The collector component models the interaction logic with each airline.
For the sake of generality, we have modeled the collector as an agent that can decide
whether to move to the location of an airline before interacting with it.

Fig. 3. Interaction scenario model

start()

req()
rep()

req()
rep()

end()

N

N

Travel Agency

Collector Airline 1 Airline k

124 V. Grassi

Fig. 4. Components internal behavior

EndOfExample4

Fig. 5

Balsamo and Marzolla model [2]. This modeling proposal suggests the use of Use
Case Diagrams (UCD and Activity Diagrams (AD). A UCD is used to express the
possible presence of different mobility behaviors. The ADs are used to represent both
the effect of mobility on the system configuration (location of entities belonging to it)
and the internal activities of each system entity. For this purpose, a “high level” AD is

Collector

WAIT query
formulation

Goto
Ai site

req()
rep()

start

end

mobility

no_mob

N

k

i-th Airline

check
airfares

req

rep

UCD

Config. 1 Config. 2 Config. 3

high-level AD

low-level “swimlaned” AD

Step 4

Step 5

Step 1 Step 2

Step 3

site 1 site 2 site 3 site 4

 Performance Analysis of Mobile Systems 125

used to model configuration changes; each node of this AD corresponds to a particular
configuration and models mobility activities that leads to a configuration change.
Associated with each node of this high level AD there is also a “low level” AD that
models the activities performed by the system when it is in that configuration. This
low level AD is “swimlaned”, where each swimlane identifies the location where the
activities it embeds are performed. Figure 5 depicts an example of use of this notation,
with a UCD modeling three different mobility scenarios. For the first scenario figure 5
includes the corresponding high level AD, showing that in this scenario the system
may assume three different configurations. When the system is in one of these
configurations (the second one) the figure also shows which are the system activities
and at which location they are performed.

This notation is suitable to model both physical and virtual mobility, as each
configuration may be the result of movements involving both physical and virtual
entities. No explicit support is provided for the modeling of different virtual mobility
patterns. Moreover, also the concept of hierarchical locations is not explicitly
supported.

Example 5. Using the notation of Balsamo and Marzolla, the travel agency application
may be modeled as follows, using an MA virtual mobility pattern. The UCD in figure
6 models two different scenarios for the implementation of this application, based on
the use of virtual mobility (according to an MA pattern), or no mobility (according to
a static client-server pattern), respectively. Figure 6 also shows the high level ADs for
these two scenarios, where, as one could expect only one configuration is possible in
the case of no mobility, while in the mobility case the configurations B1 ... Bk model
the presence of the mobile agent at each airline site, while configurations B' and B"
model the presence of the mobile agent at the travel agency site, at the beginning and

Fig. 6

No
mobility

Mobility

A

B

Config. A1

Config. B0 Config. B1 Config. B’Config. Bk

ConfigurationA1

Prepare
query

Agency site Airline 1

Check faresQuery
formulation

Check fares

Check faresQuery
formulation

Check fares

Airline k

Results

126 V. Grassi

Fig. 7

end of its trip, respectively. Moreover, figure 6 also depicts the low level AD for the
no mobility scenario. The low level ADs for the different configurations of the
mobility scenario are depicted in figure 7.

EndOfExample5

Notations based on UML lightweight extensions. The two proposals presented in
this section extend the standard UML notation through the introduction of attributes
for some classes and of new stereotypes that can be used to label modeling elements.
Methodologies for the transformation from the design model to analysis oriented
models have been suggested only the first of these proposals. These methodologies
will be presented in section 5.

Grassi and Mirandola model [15, 18]. This notation pursues the goal of separation of
concerns in the modeling of a mobile system. For this purpose, it is based on the use
of a Sequence Diagram (SD) to model the interaction logic among components of an
application, independently of any mobility aspect, and of a Collaboration Diagram
(CD) to model the interaction structure only (i.e. who interacts with whom). To model
the possible presence of virtual mobility, a moveTo stereotype is introduced that
applies to the (directional) links of the CD. Where present, moveTo indicates that the
source component of the link moves to the location of its target before starting a
sequence of consecutive interactions with it. If no other information is present, this
style applies to each sequence of interactions shown in the associated SD, between the
source and target components of the moveTo labeled link; otherwise a condition can
be added to restrict this style to a subset of interactions between two components.
Alternatively, a question mark can be used as suffix of moveTo, yielding a new
moveTo? stereotype, to model the uncertainty about the moblity of a component.
When a link between two components in a CD is labeled with moveTo?, this means
that the source component “could” move to the location of its target at the beginning
of a sequence of interactions with it. In other words, the designer does not have
enough information at that design stage to decide whether virtual mobility is really
beneficial.

Physical mobility is modeled instead using a Deployment Diagram (DD) where a
mobile physical node is modeled introducing as many replicas of that node as the
different locations where it can stay, each labeled with a different location
attribute, and connected to other replicas by suitable become labeled messages to
model some movement pattern.

Configuration B'

Prepare
query

Agency site

Query
formulation

Configuration Bi

Airline i

Check fares

Check fares

Agency site

Results

Configuration B"

 Performance Analysis of Mobile Systems 127

This notations appears suitable to model mobile system where virtual mobility
occurs according to the MA pattern only.

Example 6. According to the adopted modeling framework, the travel agency example
application can be modeled as shown in figure 8.

Fig. 8. Travel agency example: (a) interaction logic, (b) interaction style

Figure 8.a shows a SD that describes in detail the “logic” of the interaction, i.e. the
sequence of messages exchanged among the components. In this diagram no
information is present about whether or not some component changes location during
the interactions. This information is provided by the CD in figure 8.b. The diagram
shows that only c can change location, and according to the moveTo semantics
described above, it moves to the location of a, a1 or a2 before interacting with them.
Note that in figure 8.b the location of c is left unspecified (L?), since it can
dynamically change. In general, it is possible to give it a specified value in the
diagram, that would show the “initial” location of the mobile object in an initial
deployment configuration. EndOfExample6

Baumeister et al. model [4]. This notation is based on an extension of UML Class
Diagrams and Activity Diagrams to represent mobility. New stereotypes are defined
for identifying mobile objects and locations. Stereotypes are also defined for moving
and cloning activities that can be included in Activity Diagrams to represent location
changes. Mobile systems are then represented by Activity Diagrams using either a
“responsibility centered notation”, which focuses on who is performing actions, and a
“location centered notation” which focuses on where actions are being executed and
how activities change their location.

This notation can be used to model both physical and virtual mobility. For the
latter, no explicit mention is made in [4] about the modeling of different patterns.
They should be modeled by suitable combinations of moving and cloning actions. A
possible shortcoming of this notation is that it represents in the same Activity Diagram
both the mobility model (how objects change their location) and the computation
model (what kind of computations the objects perform). For large models this could
render the diagrams difficult to understand.

Notations Based on UML Heavyweight Extensions. These notations introduce
modifications at the level of the UML metamodel. As already remarked at the

a:AGENCY c:COLL. a1:AIRL. a2:AIRL.

start()
req(i)
Rep(i)

*(i=1.. N)

end()

req(i)
Rep(i)

*(i=1.. N)

a:AGENCY

location = L0

c:COLLECTOR

location = L?

a1:AIRLINE

location = L1

a2:AIRLINE

location = L2

«moveTo»

«moveTo»

«moveTo»

(a) (b)

128 V. Grassi

beginning of this section, their main drawback is their poor integration with standard
UML compliant tools. Apart from this, they provide valuable suggestions about
possible approaches to mobility modeling.

Kosiuczenko model [25]. This notation extends UML Sequence Diagrams (SD) to
represent the dynamics of a mobile system (with both physical and virtual mobility).
Mobile entities are modeled using an extended version of the SD lifelines. Each
lifeline is represented as a box that can contain other entities (lifelines). In this way,
the modeling of nested locations is supported. Stereotyped messages are used to
represent various actions such as creating or destroying an entity, or entering and
leaving a location. To some extent, this notation can be considered as a high level and
graphical derivation from the Ambient calculus, even if some semantic differences are
introduced (for example, the possibility of direct communication between entities at
different locations). This approach has the drawback of requiring a change in the
standard notation of UML Sequence diagrams, that is, lifelines should be represented
as boxes, with possibly other Sequence diagrams inside. Existing graphical UML
editors and processors need to be modified in order to support the new notation.

Manson et al. model [28]. This notation has been proposed within the framework of
the FIPA (Foundation for Intelligent Physical Agents) initiative. Hence, it is
specifically aimed at the modeling of multi-agent distributed systems, where some of
them may be mobile agents. As a consequence, the only virtual mobility pattern this
notation is explicitly interested in is the MA pattern. To model a mobile system, this
notation introduce modifications to both UML Deployment Diagrams (DD) and
Activity Diagrams (AD). The DDs are modified to model not only the deployment of
agents to physical nodes (and the existence of physical connections among these
nodes) but also the “acquaintance” relationships among agents, that are used to
specify which other agents an agent knows and may communicate with. The ADs are
modified to model not only the sequence of activities of agents, but also the paths they
can follow when moving to the locations of other agents they want to interact with.

4.3 A Semi-formal SMN: UML Profile for Mobile Systems (UML-PMS)

In this section we present the fundamental characteristics of a SMN we have proposed
for mobile systems [19]. This notation is intended to model both virtual and physical
mobility. It takes into account the case of nested locations, and offers explicit support
for the modeling of different virtual mobility patterns. Moreover, usability has been
one of the guidelines we have followed in its definition. For this purpose, it has been
defined as a lightweight UML extension (UML profile for mobile systems: UML-
PMS), compliant with the latest UML 2.0 version [47], and supports a separation of
concerns approach, keeping the modeling of the virtual and physical mobility as much
as possible separated from the modeling of other system aspects like its application
logic. In the following we present the extensions we have introduced to model three
basic concepts: locations; mobile entities and entity movement; movement “control”.
We refer to [19] for details about these extensions. Then, we show how these
extension can be used to model “standard” virtual mobility patterns (namely COD,
REV and MA).

 Performance Analysis of Mobile Systems 129

Locations. We adopt a discrete and hierarchical locations space for both virtual and
physical mobility, modeling the location concept as a relationship between two
entities, where one acts as a container for the other. This model is inspired by the
Ambient calculus model. However, differently from the Ambient model, we have
implemented in two different ways this basic idea for physical and virtual entities, to
remain compliant with the UML 2.0 metamodel.

A physical entity (such as a computing device) is located in a place (such as a
room, a building, a vehicle or even a person), and places themselves can be located in
other places (such as a room in a building). Hence, we have introduced the stereotype
<<Place>> that extends the UML 2.0 metaclass Node to encompass all these
concepts, and the stereotype <<NodeLocation>> that applies to association
instances (i.e. links) between places to explicitly express their location at some place.
Figure 9 depicts an example of <<NodeLocation>> relationship among instances
of a PDA computing device, a person who holds it and a room that person is in.

Fig. 9. Example of location relationships among nodes and places

The location of a virtual entity can be an execution environment or a computing
device (i.e. a Node in the UML metamodel), or some other virtual entity where it is
embedded. This latter case is simply modeled using the structural relationships
provided by UML to model components and subcomponents. For the former case, we
extend the UML Deployment relationship through two new stereotypes
<<CurrentDeployment>> and <<AllowedDeployment>>, using the former
to specify the location where a virtual entity is currently deployed to, while using the
latter to specify multiple relationships with locations where a virtual entity can
possibly be deployed to. The rationale for this latter stereotype is to introduce the
possibility of specifying constraints (e.g. due to administrative or security concerns)
for the locations of a component (in particular a mobile one). Figure 10 shows an
example where a Comp_B software component is currently located at a PDA place,
but it has also a Server place as possible deployment location. Also note that the PDA
itself is marked as mobile, so that also its location (not shown here) can change.

Fig. 10. Example of deployment relationships for a mobile logical element

<<Place>>
Mary : person

: PDA <<Place>>
RoomA: room

<<NodeLocation>> <<NodeLocation>>

<<Place>>
RoomB: room

<<Place>>
RoomC room

locatedAt locatedAt

<<Device>>
<<MobileElem>>

: PDA

<<Device>>

: Server

<<MobileCode>>
Comp_B

<<Current
Deployment>>

<<Allowed
Deployment>>

<<Allowed
Deployment>>

130 V. Grassi

Mobile Entities and Entity Movement. A mobile entity is an entity whose location
can change. We define two stereotypes <<MobileElement>> and
<<MobileCode>> to mark as mobile a physical and virtual entity, respectively. We
model the movement of a mobile entity as a change in the relationship between the
entity itself and its container. This change is caused by the execution of stereotyped
<<PhysicalMove>> and <VirtualMove>> activities, that we have defined in
our profile. For physical entities (i.e. nodes) the move activity corresponds to
changing the association (stereotyped as <<NodeLocation>>) with their container
node, whereas for logical entities it corresponds to updating the
<<CurrentDeployment>> dependency. The execution of a move activity is
subject to some constraints. First of all, its subject must be a mobile entity. Then, in
the case of <<MobileCode>> entities, an <<AllowedDeployment>>
dependency must exist between the subject and the destination place. Finally, as a
general rule, it can be performed only if a CommunicationPath, defined in the UML
metamodel as a specialization of an association between two nodes, exists between the
current location of an entity and the destination location. This generic and abstract
concept can be easily mapped to concrete examples corresponding to different types
of mobility. In the example of figure 9, Mary can move to RoomB, since a link (e.g. a
corridor) exists from its current location, but cannot move to RoomC. In the example
of figure 10, the Comp_B component can actually move from PDA to Server only if a
network link (not shown in the figure) exists between the two devices.

Besides these basic mobility activities, we have introduced in our profile other
mobility related activities, listed below, that refer specifically to virtual mobile
entities, and allow a more complete modeling of different mobile code patterns:

• <<BeforeMove>> : this stereotype is used to define the activities that prepare a
<<MobileCode>> element to be copied or moved (e.g. the serialization of a
component, the handling of bindings to resources or local data, the encryption of
confidential data that must cross untrusted channels);

• <<AfterMove>> : this stereotype is used for activities that operate on a
<<MobileCode>> element after its migration to a new execution environment
(e.g. the regeneration of a component able to run again out of its serialized form, the
recreation of the data structures and execution context the component expects to
find upon resuming its execution);

• <<AllowDeployment>> : an activity stereotyped in this way is a
CreateLinkAction (see the UML metamodel) that adds a deployment to the set of
allowed deployments for a given DeployedArtifact;

• <<DenyDeployment>> : an activity stereotyped in this way is the
complementary of a <<AllowDeployment>> activity, and is used to remove a
deployment from the set of allowed deployments for a given DeployedArtifact.

Movement “Control”. The modeling elements we have presented so far show how
we can model the manifestation of a mobility behavior, but they do not give any
means to specify what “triggers” such a behavior. We model this latter issue by means
of the mobility manager concept, whose main purpose is to encapsulate all the logic of
mobility, separating it from any other modeling concern, and in particular from the
intrinsic software application logic. The interaction between a mobility manager and

 Performance Analysis of Mobile Systems 131

the other parts of the modeled system is possible by giving to the manager the ability
to perceive events that occur in its “environment” (which can be composed by both
physical and logical elements) and to react to them by firing mobility activities, as
those listed above. To this end, a mobility manager is modeled as a state machine
stereotyped as <<MobilityManager>>, whose main characteristics is that it can
dispatch “mobility activities” defined, in general, as a suitable composition of the
activities listed above. Its initial state is entered as soon as the system is started. A
state transition fires when the event specified in the transition label occurs, provided
that the guard condition specified in the same label is satisfied. Hence, by properly
defining the guard condition and the firing event in terms of conditions and events that
occur in the manager environment we can model suitable interactions between the
manager and its environment. We adopt the same concept for both physical and
virtual mobility.

We recall that in the Grassi-Mirandola model reviewed in section 4.2 it was
introduced the possibility of explicitly modeling the designer uncertainty about the
introduction of mobility (albeit limited, in that model, to the MA mobility pattern), by
introducing an ad hoc stereotype. In the model we are reviewing here, the same effect
can be reached (for all kinds of mobility) by the use of a nondeterministic state
machine as mobility manager: given a mobility manager, the uncertainty about some
mobility behavior can be modeled by adding for each transition dispatching that
behavior another transition enabled and triggered by the same conditions and events,
but that does not dispatch any mobility activity.

Finally, we point out that, in principle, a mobility manager should be mainly
intended as a “modeling artifact”, that could not directly correspond to some specific
entity in a real implementation of the system we are modeling, or whose
responsibilities can be shared among several different entities; its modeling utility
actually consists in giving the possibility of providing an easily identifiable entity that
encapsulates the logic that drives mobility. In this way different mobility managers,
each modeling a different mobility behavior or policy, can be modularly plugged into
some physical environment or software application model, to experiment with
different environment dynamics and/or adaptation policies. Of course, once a virtual
mobility policy modeled by some manager is selected to be incorporated in a system
implementation, it remains the open design problem of how implementing it into the
“real” system components.

Models of Virtual Mobility Patterns. In this section we show how “standard”
patterns for virtual mobility can be modeled, using our profile, by a suitable definition
of the event that triggers a state transition of some mobility manager, and of the code
mobility activity dispatched by this state transition, where this activity is defined by a
suitable composition of the basic activities defined in the profile.

The COD interaction pattern can be modeled by defining the triggering event of the
mobility manager as the invocation of the operation implemented by the remotely
located code, possibly conditioned by some other guard condition (see figure 11(b)),
while the dispatched mobility activity is the sequence of “grey” activities shown in
figure 11(a). Figure 11(a) also shows the whole activity diagram fragment obtained by
plugging the COD pattern into a basic location unaware interaction pattern (“white”
activities).

132 V. Grassi

Fig. 11. UML-PMS model of the COD pattern

On the other hand, in the REV case, the triggering event is again the operation
invocation (see figure 12(b)), while, analogously to figure 11(b), the corresponding
sequence of activities and the result of plugging them into a basic location unaware
interaction pattern are shown in figure 12(a).

Fig. 12. UML-PMS model of the REV pattern

Finally, in the MA pattern the triggering event in the mobility manager can be any
suitable event occurring in the software application or its environment (according to
some mobility policy the designer wants to model). Figure 13(a) depicts an activity
diagram fragment modeling the location unaware behavior of some component, while
figure 13(c) shows the result of plugging into it the MA pattern triggered by the
mobility manager fragment depicted in figure 13(b).

invoke

<<BeforeMove>>
Prepare To Migrate

<<AfterMove>>

Prepare To Exec
<<MobileCode>>

Code

<<MobileCode>>

Code

Do S ervice

Code To
Migrate

Use Results

<<LogicalMove>>

Move Code

LocalExecEnv RemoteExecEnv

State A

State B

entry/COD(Comp1, Comp2.CurrentDeployment)

[Comp1/COD(Comp1,Comp2.CurrentDeployment)]

InvokeService /

(a)

(b)

invoke

<<BeforeMove>>
Prepare To Migrate

<<LogicalMove>>

Move Code
<<AfterMove>>

Prepare To Exec
<<MobileCode>>

Code
<<MobileCode>>

Code

Do Service

Code To
Migrate

Destination

Use Results
LocalExecEnv R emoteExecEnv

State A

State B

entry/REV(Comp1, RemoteHost)

[Comp1.CurrentDeployment.lowbattery] InvokeService /(a)

(b)

 Performance Analysis of Mobile Systems 133

Fig. 13. UML-PMS model of the MA pattern

Example 7. The travel agency application can be modeled as follows using our UML
profile for mobile systems. Figure 14 depicts a location unaware model of the
application logic, defined by an Activity Diagram, and figure 15 depicts a model
(Deployment Diagram) of the supporting platform and of application components
deployment (in the case of two Airline sites). We can “plug” mobility into this model
by first suitably labeling the application and platform components, using suitable

Fig. 14. Location unaware model of the application logic

Activity 1

<<BeforeMove>>
Prepare To Migrate

<<LogicalMove>>

Migrate
<<AfterMove>>

Prepare To Exec
<<MobileCode>>

Mobile Agent
<<MobileCode>>

Mobile Agent

Activity 2

Destination

LocalExecEnv RemoteExecEnv

State A

State B

entry/MA(ExecEnv1)

SomeEvent /

(c)

Activity 1

Activity 2

LocalExec
Env

Remote
ExecEnv

(a) (b)

TravelAgeny Collector Airline i

invoke Collector

send req

proce ss req

send answer

examine ans.

[more info]

[more info]

send ticket info

select best

134 V. Grassi

Fig. 15. “Static” system model

profile elements, as depicted in figure 16. Then, figures 17(a) and 17(b) depict two
different mobility managers that model, respectively, the introduction of virtual
mobility according to the REV and MA pattern, respectively. These managers, as a
consequence of events occurring in the application logic (as modeled by the AD of
figure 14) trigger suitable mobility behaviors (as specified by the “grey” activities of
figure 12 and 13, respectively). Note that, actually, only the manager of figure 17(a) is
compatible with the platform model of figure 16. The manager of figure 17(b) would
cause an “error” because the “TravelAgency” component has not been declared as
“mobile”. This error can be corrected by labeling also this component as
<<MobileCode>> (or by giving up the MA pattern). In particular, the manager of
figure 17(a) models the transfer from the travel agency site and remote execution at
each airline site of a copy of the Collector component, according to the REV pattern.
On the other hand, the manager of figure 17(b) models the TravelAgency and
Collector components traveling together, according to the MA pattern, from an airline
site to the next one, locally collecting the necessary information, and then reporting it
back to the travel agency site.

Fig. 16. Adding mobility to the system model

Finally, figure 18 is an example of mobility managers that include the modeling of
the designer uncertainty about the opportunity of moving the collector component, as
discussed above. Differently from the mobility managers of figure 17, in each of the
figure 18 managers the “invoke(Collector)” event triggers non deterministically two
transitions to two “twin” states, where in only one of them the REV or MA behavior
is dispatched.

<<Device>>

TravAgServer

<<Device>>

Air1Server

Internet

TravelAgency

Collector
Air2

Air1
<<deploy>>

<<deploy>>

<<deploy>> <<Device>>

Air2Server
(a)

<<Device>>

TravAgServer

<<Device>>

Air1Server

Internet

TravelAgency

<<MobileCode>>
Collector

Air2

Air1
<<deploy>>

<<deploy>>

<<Allowed
Depl.>> <<Device>>

Air2Server
<<Allowed

Depl.>>

<<Allowed
Depl.>>

 Performance Analysis of Mobile Systems 135

Fig. 17. Two different mobility managers

Fig. 18. Non deterministic mobility managers

EndOfExample7

5 From Design Models to Performance Analysis Models
(SMN (+ MI) --> TMN)

In this section we outline transformation methodologies to suitable TMNs that have
been proposed for some of the SMNs reviewed in section 4. In this review, we limit
ourselves to TMNs that support stochastic performance analysis of mobile systems
(hence, we do not consider TMNs that support, for example, deterministic
performance analysis like worst case execution time). TMNs that have been
considered to this end include Markov and Markov Decision processes, Petri nets,
Queueing Networks and simulation models. To support any of these transformations,
models expressed using the notations of section 4 must be enriched with some
information, that is what we have called MI in the general modeling framework
presented in section 2. When NFA=“performance”, this information includes time-
related (e.g. frequency and/or duration of events of interest) and non time-related
information (e.g. selection of alternative execution paths, size of exchanged messages

invoke(Collector) /

entry/REV(Collector, Airi.loc)

[no more info] /sendTicketInfo /
(a)

invoke(Collector) /

entry/MA(Collector, Airi.loc), MA(TravelAgency, Airi.loc)

[no more info] /sendTicketInfo /
(b)

entry/MA(Collector, Airi.loc), MA(TravelAgency, Airi.loc)

<<Mobility
Manager>>

<<Mobility
Manager>>

invoke(Collector) /

entry/REV(Collector, Airi.loc)[no more info] /

sendTicketInfo /

[no more info] /

invoke(Collector) /

invoke(Collector) /
entry/MA(Collector, Airi.loc), MA(TravelAgency, Airi.loc)

[no more info] /sendTicketInfo /
(b)

entry/MA(Collector, Airi.loc), MA(TravelAgency, Airi.loc)

(a)

[no more info] /

invoke(Collector) /

<<Mobility
Manager>>

<<Mobility
Manager>>

136 V. Grassi

and mobile components) both expressed in stochastic form. Besides determining the
MI for a particular modeling and analysis domain, we have also to define a notation to
express it, that should be well integrated with the adopted SMN. In the following, for
each of the two classes of SMNs we have reviewed in section 4 (process algebras and
UML based notations) we describe notations that have been proposed to express MI,
and present transformation methodologies from some of these SMNs (plus MI) to
some TMN.

5.1 From Process Algebras to Performance Models

Expressing MI in Process Algebra Models. Time related information can be
introduced in a process algebra based SMN by associating a duration to each action
modeled in that algebra (i.e. to each π Act). From a notational viewpoint, this is
achieved by substituting each π with a pair (π, info) where info denotes the duration of
π. Hence, the basic syntax of a process algebra, presented in section 4.1, is
transformed as follows:

P ::= 0 | (π, info).P | P + P |P || P | …

In a stochastic setting, it has been generally assumed that time durations of process
algebra actions are expressed as exponentially distributed random variables (the main
reason for this is the memoryless property of the exponential distribution that
integrates well with the compositional nature of process algebras). In this case, info =
λ, where λ is the parameter of an exponential distribution. We defer to the vast
available literature for details about the general characteristics of these formalisms,
known as stochastic process algebras (e.g., [14, 21]).

Besides time related information like action duration, other information could
belong to the MI needed to carry out a performance analysis: this information could
include, for example, the size of an exchanged message, or the energy consumption
associated with a given action. This kind of information may be generally expressed
in the form of a reward (or cost) associated with the system actions, which is
accumulated when those actions are performed. Hence, from a notational viewpoint,
this may be expressed by setting info = (λ, r) where r is the reward of the associated
action. Also in this case, we defer to available literature for details (e.g. [5, 19]).

Transformation Methodology. The selected TMN for the transformation
methodology we are going to outline is a continuous time Markov Process (CTMP).
The transformation methodology exploits the operational semantics associated with a
process algebra. Hence, besides the process algebra based notations reviewed in
section 4.1, this methodology can be applied to any formal notation with an
operational semantics. We start with a brief review of operational semantics.

The operational semantics of a process specified using the syntax of a given
process algebra is given by a labeled transition system, i.e. (informally) a graph that
represents all the possible system evolutions; each node of the graph represents a
particular system state, while a transition represents a state change, and the label
associated with a transition provides information about the “activities” that cause the
corresponding state change. The transition relation (i.e. which are the states reachable

 Performance Analysis of Mobile Systems 137

in one step from a given state, and the associated labels) is specified by giving a set of
syntax-driven rules, in the sense that they are associated to the syntactic rules of the

algebra. Each rule takes the form Pr emises

Conclusion
 whose meaning is that whenever the

premises (that can be interpreted as a given computational step) occur, then the
conclusion will occur as well. (Simplified) examples of such rules are the following:

π.P
π → P

,
P

π → P '

P+ Q
π → P'

,
P

π → P'

P || Q
π → P' || Q

,
P

outx → P ', Q
inx → Q'

P || Q
τ → P' || Q'

Note that the third rule specifies a transition relation for parallel independent
processes, while the fourth rule specifies a transition relation for parallel processes
that synchronize themselves through a communication operation8.

Example 8. The transition graph obtained applying rules as the ones specified above
to the Sys model of example 2 (using HOπ-calculus) is given by (assuming C =
(τ1+ τ2).0):

0 τ1

τ2

τ
1 2 3 4 5τ1

τ2

τ τ

τ

EndOfExample8

The state transition graph obtained in this way can be considered as the “skeleton” of
a CTMP, providing information about possible state transitions. The only thing we
need to get a complete CTMP is to associate an exponential rate with each state
transition. These rates can be easily derived from the rates specified in the labels of
the actions involved in a state transition (see for example [21]).9 We note that, as a
consequence, from the viewpoint of the obtained model representativeness, the
transition rate values cannot be more accurate than the rate associated with each
single action. The accuracy of the action rates depends on the adopted technique of
information collection (CT in the general framework of section 2). However, the
discussion of CT issues is beyond the scope of this paper. In the following, we rather
present a methodology aimed at improving the basic technique used to build state
transition rates starting from action rates (which are hence assumed as given) [37].
This methodology has been presented in the framework of π-calculus and HOπ-
calculus, but it is applicable to any formalism with an operational semantics

8
 In the “standard” semantics of process algebras [35], the label of this latter rule is equal to τ,
that is an invisible action, since the two matching input and output operations “consume”
each other, making them unobservable for an external “observer” (e.g. a process running in
parallel).

9 Transformation methodologies that have been proposed basically differ only in the way
adopted to calculate the rate of synchronization (i.e., communication) operations; for a
discussion of this topic, see [21].

138 V. Grassi

The idea of [37], is to associate with each transition a label that does not merely
register the action associated to that transition (e.g., τ1, as in example 8), but also the
inference rules used during the deduction of the transition, so to keep trace of the
“underlying operations” that lead to the execution of that action. For instance, in
example 8 the operation underlying the execution of action τ1 is a selection operation
between the two concurrently enabled operation τ1 and τ2. These “enhanced” labels
can be used to define a systematic way for deriving the rates to be associated with the
system transitions. The enhanced labels are built using symbols from a suitable
alphabet (e.g., {+, ||, …}), to record the inference rules used during the derivation of
the transitions. For example, the transition rules given above would be rewritten as
follows to get enhanced labels10:

π.P
π → P

,
P

θ → P '

P+ Q
+θ → P'

,
P

θ → P'

P || Q
||θ → P' || Q

,

P ϑout x → P', Q ϑ 'in x → Q '

P || Q
||ϑout x, ϑ' in x → P' || Q '

where an enhanced label is, in general, given by θ = ϑπ, with π denoting, as before, a

particular system action, and ϑ {+, ||, …}
*
 denoting the sequence of inference rules

followed to fire that action.

Example 9. The transition system of example 8 would be enhanced as follows:

EndOfExample9

Using the enhanced labels, the rate of a transition can be calculated by defining
suitable functions, as follows:

$b : Act → ℜ +, $s : {+, ||, …} → ℜ +, $: {+, ||, …}
* Act→ ℜ +

where denotes the concatenation operator, $b defines the basic exponential rate of
an action (i.e. the λ value associated with that action) in a reference architecture
dedicated only to the execution of that action without any interference, while $s
defines a slowing factor in the execution of an action due to the execution of some
underlying operation in the target architecture where the action is actually executed. $
is the function that calculates the actual exponential rate of the transition, taking into

10 Again, we are introducing a simplification: in a complete specification different symbols

should be used to distinguish the selection of the left or right alternative in a parallel or
alternative choice composition (see [37]).

0 +t1

+t2

1 2 3 4 5+t1

+t2
<||outa1(C),
||ina1(z)>

<||ina1(x),
||outa1(R1)>

<||outa2(C),
||ina2(z)>

<||ina2(x), ||outa2(R2)>

Œ

 Performance Analysis of Mobile Systems 139

account all possible interferences, and can be basically recursively defined using $b
and $s, as follows:

By suitably defining the functions $b and $s, we can limit the problem of
calculating meaningful transition rates to the problem of defining only the cost of the
“primitive” system actions, and of the slowing factors caused by a particular target
architecture (but it should be remarked that the definition of the above functions and
the collection of the “primitive” rates are, in general, non trivial tasks). Moreover, by
changing the definition of $s, we can also analyze the impact on performance of
different target architectures.

Once the rates of all the possible transitions from a given state (representing the
system behaving like process Pi) have been determined, the overall rate from state Pi
to another state Pj which is one-step successor of state Pi is given by:

(note that, in general, more than one transition from state Pi to state Pj may be present
in the graph of the transition system).

The presented methodology concerns the derivation of transition rates of a CTMP.
A similar approach can be followed also to calculate the rewards when TMN is a
Markov Reward process, exploiting the rewards specified in the starting SMN [5, 37].

5.2 From UML Based Models to Performance Models

Expressing MI in UML Based Models. The OMG has defined a standard set of
concepts and notations that can be used to enrich a UML based model with time
related information, collecting them in the standard Profile for Schedulability,
Performance and Time (SPT) [48]. At the core of the profile is the general resource
modeling (GRM) framework, which provides a common model of resources and of
their Quality of Service (QoS) attributes. The GRM includes several aspects that are
grouped in different models (Core Resource, Causality, Resource Usage, Resource
Type, Realization or Deployment). Based on the GRM, more specific sub-profiles are
defined in SPT, whose purpose is to specialize the general concepts of GRM to better
represent the needs of a specific domain. Since our domain of interest is performance
we focus in particular on the SPT performance analysis sub-profile (PA).

The SPT-PA profile extends the UML notation to deal with the performance
specific basic notions of scenario, resource, and workload, and the associated
attributes (in the following, PA attributes), to support extensive and wide-ranging
performance analysis: the scenario, i.e., an ordered sequences of steps, describes
various dynamic situations involving the usage of a specified set of both processing
and passive resources under specified workloads; the resource describes a server in a
performance model, that can be active or passive; finally, the workload describes the
load intensity and the required or estimated response time for a scenario. We do not

$(p) = $b(p), $(sJp) = $s(s)$(Jp), s Œ {+, ||, …}, J Œ {+, ||, …}*

q(Pi, Pj) =
Pi

Jpæ Æ æ æ Pj

Â $(Jp)

140 V. Grassi

give here details about these notations (see [48] for details). In the rest of this section,
we outline transformation methodologies for some of the UML based SMNs reviewed
in section 4.2, assuming that they have been enriched with suitable MI represented
using the notations of the SPT-PA profile. Then, in section 5.3, we focus on the UML
based SMN presented in section 4.3 (UML profile for mobile systems), showing
explicitly how the notations defined in the SPT-PA profile can be used to embed the
performance related MI within this SMN for mobile system, and how we can derive
performance models from design models expressed in this enriched notation.

Transformation Methodologies. Differently from process algebras based SMNs,
that basically share a single transformation methodology to a single TMN (Markov
process), the situation is less homogeneous for UML based SMNs, for both the
proposed transformation methodology itself and the adopted TMN.

Merseguer et al. model [31]. In this case the adopted TMN is a Generalized
Stochastic Petri Net. The methodology defines a way for building a Petri net from
each State Diagram describing a single component, and then an overall Petri Net
using information extracted from the Sequence Diagram that models an interaction
scenario.

Example 10. Let us consider the model presented in the example 5. The MI that must
be added to that model to carry out performance analysis includes the (exponentially
distributed) duration of system actions, the size of the Collector component and of the
request and reply messages, and the probability of selecting the “moving” or “not
moving” alternative for the interaction with an airline site. Using this MI, we get the
following Stochastic Petri net:

EndOfExample10

Balsamo and Marzolla model [2]. The adopted TMN is a process-oriented simulation
model, implemented as a discrete-event C++ simulation program. The transformation
methodology is close to a one-to-one mapping from elements of UML model
(enriched with SPT-PA annotations) to elements of the simulator, so that the structure
and the dynamics of the simulator closely follows the structure and the behavior of
the UML model.

Grassi and Mirandola model [15, 17, 18]. We recall that this notation supports the
modeling of systems with physical and virtual mobility, with the latter restricted to

start req rep

end

N

mobility

no_mob

k

Probability of moving

query
formulation

Goto
Ai site

check
airfares

Size of request message Size of reply message

Size of collector component

 Performance Analysis of Mobile Systems 141

the MA pattern. Moreover, it also supports the explicitly modeling of the designer
uncertainty about virtual mobility, through the use of the moveTo? stereotype. Hence
the goal of the proposed transformation methodology is to build models whose
solution gives to the designer insight about the effectiveness of virtual mobility. In
terms of the proposed SMN, the gained insights should allow the designer to
substitute the moveTo? labels in the preliminary CD with (possibly constrained)
moveTo labels, or with no such label at all, if the obtained insights provide evidence
that a static architectural style is more advantageous. Two different transformation
methodologies have been proposed to this end [15, 17, 18] that derive two different
TMNs, namely, a Markov Decision model [42] or a “non deterministic”
ExecutionGraph/Queueing Network model (see later). When no moveTo? label is
present in the starting design model (i.e. when there is no uncertainty about the design
to be adopted), the derived models reduce to Markov Reward and ExecutionGraph/
Extended Queueing Network models, respectively [23, 45]. In the following we
briefly present these two methodologies.

The first methodology is suitable for cases when the NFAs of interest are mainly
interaction-related measures (e.g., generated network traffic) without considering
possible contention with other applications.

The second one, based on classic SPE technique [45, 46], is suitable for cases
where the NFAs of interest are measures like throughput or response time and we are
possibly interested in considering contention with other applications on the use of
system resources. Two different TMNs are taken into account, namely, Execution
Graphs and Extended Queueing Network Models for NFAs with and without
consideration to the impact of contention, respectively.

Let us consider the first methodology. In general, a Markov Reward Process
(MRP) models a state transition system, where the next state is selected according to a
transition probability that only depends on the current state. Moreover, each time a
state is visited or a transition occurs, a reward is accumulated, that depends on the
involved state or transition. Typical measures that can be derived from such a model
are the reward accumulated in a given time interval, or the reward accumulation rate
in the long period. A Markov Decision Process (MDP) extends the MRP model by
associating to each state a set of alternative decisions, where both the rewards and the
transitions associated with that state are decision dependent. A policy for a MDP
consists in a selection, for each state, of one of the associated decisions, that will be
taken each time that state is visited. Hence, different policies lead to different system
behaviors and to different accumulated rewards. In other words, a MDP defines a
family of MRPs, one for each different policy that can be determined. Algorithms
exist to determine the optimal policy with respect to some optimality criterion (e.g.
minimization of the accumulated reward) [42].

In the translation methodology adopted in [15, 18], a MRP/MDP state corresponds
to a possible configuration of the components location, while a state transition models
the occurrence of an interaction between components or a location change, and the
associated reward is the “cost” (e.g. number of transmitted bytes, energy
consumption) of that interaction. In case of MDP, the decisions associated with states
model the alternative choices of virtual mobility or no virtual mobility as software

142 V. Grassi

architectural style, for those components that are the source of a moveTo? labeled
link.

The translation method from the extended UML to this TMN consists of the
definition of some elementary generation rules, and then in the use of these rules to
define a MDP generation algorithm [15, 18].

Once the MDP has been generated, it can be solved to determine the optimal
policy, that is the selection of a decision in each state that optimizes the reward
accumulated in the corresponding MRP. Of course, the optimal policy depends on the
values given to the system parameters (e.g., the size of the messages and of the
possibly mobile component). Different values for these parameters model different
scenarios.

Now, let us consider the second methodology [17], based on SPE techniques and
having Execution Graphs (EG) and Extended Queueing Network (EQN) models as
TMN.

We start by briefly reviewing SPE. Its basic concept is the separation of the
software model (SM) from its execution environment model (i.e., hardware platform
model or machinery model, MM). The SM captures the essential aspects of software
behavior; and is usually represented by means of Execution Graphs (EG). An EG is a
graph whose nodes represent software workload components and whose edges
represent transfers of control. Each node is weighted by a demand vector that
represents the resource usage of the node (i.e., the demand for each resource).

The MM models the hardware platform and is based on an EQN model. To specify
an EQN, we need to define: the components (i.e., service centers), the topology (i.e.,
the connections among centers) and some relevant parameters (such as job classes,
job routing among centers, scheduling discipline at service centers, service demand at
service centers). Component and topology specification is performed according to the
system description, while parameters specification is obtained from information
derived by EGs and from knowledge of resource capabilities. Once the EQN is
completely specified, it can be analyzed by use of classical solution techniques
(simulation, analytical technique, hybrid simulation) to obtain performance indices
such as the mean network response time or the utilization index.

To cope with mobility, in the methodology proposed in [17], well-known
formalisms such as EG and EQN have been extended by defining the mob?-EG and
mob?-EQN formalisms with the goal of modelling code mobility and the uncertainty
about its possible adoption, within a model of the system dynamics.

To include the information about possible component mobility expressed in the
CDs by moveTo? labeled links, a new kind of EG called mob?–EG is derived [17].
The mob?-EG modifies the original EG by introducing mv nodes that model the
“cost” (typically, processing and communication) of code mobility. Moreover, the
mob?-EG extends the EG formalism by introducing a new kind of node, called mob?,
characterized by two different outcomes, “yes” and “no”, that can be non-
deterministically selected, followed by two possible EGs. The EG corresponding to
branch “yes” models the selection of component mobility style, while the EG of the
branch “no” models the static case.

 Performance Analysis of Mobile Systems 143

Example 11. The structure (without labels showing performance related information)
of the mob?-EG derived from the SD and CD of example 6 is depicted in the
following figure.

mob?

m ob?

mv

mv

m v
m v

m ob?

mv

mv

N

N

N

N

N N

noyes

yes
ye s

no

no

EndOfExample11

Mob?-EG can be considered by itself as the TMN for a first kind of performance
evaluation corresponding to the special case of a stand-alone application where the
application under study is the unique in the execution environment (therefore there is
no resource contention). In this case performance evaluation can be carried out by
standard graph analysis techniques [45] to associate an overall “cost” to each path in
the mob?-EG as a function of the cost of each node that belongs to that path. Note that
each path in the mob?–EG corresponds to a different mobility strategy, concerning
when and where components move. Hence these results provide an optimal bound on
the expected performance for each strategy, and can help the designer in selecting a
subset of the possible mobility strategies that deserve further investigation in a more
realistic setting of competition with other applications.

The complete application of SPE techniques implies the definition of a target
performance model obtained from the merging of the mob?-EG with a QN modeling
the executing platform. The merging leads to the complete specification of a EQN by
defining job classes and routing, using information from the blocks and parameters of
the mob?-EG. However, well known translation methodologies [10, 45] are not
sufficient to perform this merging because of the presence of the mob? nodes with
non-deterministic semantics in the mob?-EG; hence it is necessary to give a new
translation rule to cope with this kind of nodes. To this end an extension of classical
EQN models has been proposed in [17], to be used as TMN. The extension is based
on the definition of new service centers, called r?(outing), that model the possibility,
after the visit of a service center (and therefore the completion of a software block) of

144 V. Grassi

choosing, in a non-deterministic way, which is the routing to follow: the one
modelling the static strategy or the one modelling the mobile strategy.

In such a way, a job visiting center r? generates two different mutually exclusive
paths: one path models the job routing when the component changes its location, the
other one models the routing of a static component. Note that, as node mob? in the
EG, nodes r? are characterized by a null service time, since they only represent a
routing selection point. The obtained model is called mob?-EQN and is characterized
by different routing chains starting from nodes r?. Note that these different routing
chains are mutually exclusive; in other words a mob?-EQNM actually models a
family of EQNs, one for each different path through the r? nodes, corresponding to a
different mobility policy.

Example 12. The following figure illustrates an example of mob?-EQN derived from
the mob?-EG of example 11, exploiting also information about the execution platform
(e.g., obtained from a UML Deployment Diagram). The figure evidences the mutually
exclusive routing chains.

EndOfExample12

When the mob?-EQN is the TMN, the ST suggested in [17] for contention based
analysis is based on solving the mob?-EQN through well assessed techniques [23,
45], separately considering each different EQN belonging to the family modeled by
the mob?-EQN. When the number of different EQN models is high, this solution
approach could result in a high computation complexity. This problem can be
alleviated by exploiting results from the stand-alone analysis. It is still an open
problem how to devise more efficient solution methods. Starting from the obtained
results it is possible to choose the mobility strategy which is optimal according to the
selected criterion, for example the one that minimizes the response time.

5.3 UML Profile for Mobile Systems: Performance Annotations and
Transformation to Performance Models

Adding MI to the UML Profile for Mobile Systems. In this section we show how
elements of the SPT-PA profile can be used to add performance related MI to the
design model of a mobile system expressed using the SMN described in section 4.3

r?

r?

CPU0 CPU1

CPU2

net01

net02 net12

yes

yes

no

no

path 1
path 2
path 3

 Performance Analysis of Mobile Systems 145

(UML-PMS) [19]. We recall that the UML-PMS goal is to provide the means for
“plugging” mobility features into a pre-existing, mobility unaware, UML based
design. Hence, we only focus on the MI that must be added to model elements
directly involved in mobility. Of course, to carry out performance analysis, it could be
necessary to enrich with suitable performance related annotations also elements of the
original model (expressed using the “standard” UML) not directly involved in
mobility.

For what concerns entities belonging to the physical platform of the system, we
have to specify performance features of those nodes that play a significant role in the
execution of (parts of) an application. For example, this is the case of the nodes that
correspond to processing or communication devices. According to the SPT profile,
this can be achieved by labeling these nodes with the <<PAhost>> or
<<PAresource>> stereotypes, depending on whether they play the role of
“processing resource” or “passive resource”, respectively.11 These stereotypes add to
the node they are associated with a list of attributes that can be used to specify
performance related information (e.g.: scheduling policy, processing rate). Figure 19
shows two nodes (one of which is also stereotyped as mobile) stereotyped as
<<PAhost>>, so allowing the addition of performance attributes (graphically
expressed by the “notes” attached to these nodes).

Fig. 19. Performance annotations for computing nodes in a UML-PMS model of a mobile
system

Then, we must take into account the impact on the overall system performance of
“mobility activities” defined in UML-PMS. The only activities that are relevant to
this end are <<PhysicalMove>>, <VirtualMove>>, <<BeforeMove>>, and
<<AfterMove>. As a consequence, as depicted in figure 20, these activities are
labeled with the SPT-PA <<PAstep>> stereotype, to have the possibility of
exploiting the list of attributes associated with this stereotype.12 However, only a part
of these attributes is meaningful for some of these activities, as discussed below.

11

 A processing resource is a device where a computation (“processing step” in the SPT-PA
terminology) can be allocated; a passive resource is a resource that can be accessed during a
computation.

12
 We introduce in figure 20 a little abuse of notation, as the performance annotations should
be actually associated with the stereotyped activities, and not with the stereotypes
themselves.

<<PAhost>>
<<MobileElem>>

: PDA

<<PAhost>>

: Server

PAutilization = ...
...

PAschdPolicy = ...
...

146 V. Grassi

Fig. 20. Performance characterization of mobility activities

A <<PhysicalMove>> refers to a physical entity and denotes the occurrence of
an event which is out of the control of the designer. Hence, from a performance
viewpoint, the typical information we may want to associate with this activity is when
it will occur (once a given state of a mobility manager has been entered), or which is
the probability of its occurrence, given that some event has occurred. This activity does
not have a direct performance cost, since its “execution” does not require the
intervention of computing or communication resources. As a consequence, we are
interested in the PAdelay or PAprob attributes associated with the <<PAstep>>
stereotype, that are used to denote, respectively, the delay or the probability to dispatch
the activity, once it is enabled. PAdelay can be defined as a random variable, to model
the uncertainty about the delay length. Note that the introduction of stochastic aspects
in a state machine requires a careful definition of its semantics. We do not discuss here
this issue, that has been already considered in other papers, like [26].

A <<VirtualMove>> activity refers to a virtual entity and denotes the firing of
virtual mobility for some application component as a consequence of some event in
the application environment. Hence, when its enabling condition holds and its
triggering event occurs, this activity is dispatched with no delay (apart from the delay
indirectly caused by shared resource contention), and with probability one. This
activity has also a direct performance cost, corresponding to the traversal of the
communication link from the source to the destination location (that involves the use
of communication and computing resources): it is reasonable to assume that this cost
is proportional to the size of the moving entity. Based on these considerations, a
<<VirtualMove>> exploits only the PAdemand attribute of the <<PAstep>>
stereotype, that denotes the demand of communication and computing resources
caused by the movement of some logical entity. This demand is parametric with
respect to the size M of the moving entity, and will be mapped to the communication
and computing resources used to connect the source and destination location.

Let us now consider the <<BeforeMove>> and <<AfterMove>> activities.
The only <<PAstep>> attribute they exploit is PAdemand, that denotes the demand
of computing resources needed to perform them (figures 20(b) and 20(c)). This
demand is again parametric with respect to the size M of the moving entity, and will
be mapped to the computing resources of the source and destination location,
respectively.

Adding MI to virtual mobility pattern models. Figures 21, 22 and 23 depict how the
“general rules” outlined above can be exploited to embed performance related
information in the models of virtual mobility patterns described in section 4.3.

<<Stereotype>>
PhysicalMove

<<Stereotype>>
VirtualMove

<<PAstep>>
PAdelay = ...
PAprob = ...

<<Stereotype>>
BeforeMove

<<Stereotype>>
AfterMove

<<PAstep>>
PAdemand = ... f($M)

<<PAstep>>
PAdemand = ... f($M)

<<PAstep>>
PAdemand = ... f($M)

(a) (b) (c)

 Performance Analysis of Mobile Systems 147

Fig. 21. Performance characterization of the COD pattern

Fig. 22. Performance characterization of the REV pattern

Fig. 23. Performance characterization of the MA pattern

Transformation to Performance Models. In this section, rather than presenting
transformation methodologies built from scratch for UML-PMS models, we discuss
how we can exploit existing methodologies. We distinguish three different uses of
UML-PMS (with the SPT based performance annotations outlined above):

invoke

<<BeforeMove>>
Prepare To Migrate

<<AfterMove>>
Prepare To Exec

<<MobileCode>>
Code

<<MobileCode>>

Code

Do S ervice

Code To
Migrate

Use Results

<<LogicalMove>>

Move Code

<<PAstep>>
PAdemand = …f($M)

<<PAstep>>
PAdemand = …f($M)

<<PAstep>>
PAdemand = …f($M)

LocalExecEnv RemoteExecEnv

invoke

<<BeforeMove>>

Prepare To Migrate

<<LogicalMove>>
Move Code

<<AfterMove>>
Prepare To Exec

<<MobileCode>>

Code
<<MobileCode>>

Code

Do Service

Code To
Migrate

Destination

<<PAstep>>
PAdemand = …f($M)

<<PAstep>>
PAdemand = …f($M)

<<PAstep>>
PAdemand = …f($M)

Use Results
LocalExecEnv R emoteExecEnv

Activity 1

<<BeforeMove>>

Prepare To Migrate

<<LogicalMove>>

Migrate
<<AfterMove>>

Prepare To Exec
<<MobileCode>>

Mobile Agent
<<MobileCode>>

Mobile Agent

Activity 2

Destination

<<PAstep>>
PAdemand = …f($M)

<<PAstep>>
PAdemand = …f($M)

<<PAstep>>
PAdemand = …f($M)

LocalExecEnv RemoteExecEnv

148 V. Grassi

a) modeling of systems characterized by virtual mobility only, with no uncertainty
about mobility;

b) modeling of systems characterized by physical and virtual mobility, with no
uncertainty about virtual mobility;

c) modeling of systems characterized by uncertainty about virtual mobility.

The former two cases imply the use of deterministic mobility managers only, while
the latter implies the use of non deterministic mobility managers, as discussed in
section 4.3.

Let us consider first case a. Note that, as a preliminary step, we may easily
transform the UML-PMS model into a standard UML model, by simply navigating
through the Activity Diagram (AD) that models the application logic and “weaving”
into it, at suitable points (corresponding to triggering events for mobility managers of
the UML-PMS model) the AD fragments that model the adopted virtual mobility
pattern (see figures 20, 21 and 22). After this weaving has been completed, what we
get is an application logic model consisting only of a standard AD with SPT-PA
performance annotations. Hence, any transformation methodology from UML and
SPT-PA compliant models to performance models can be used to derive performance
models, even if that methodology do not have been defined having in mind models of
mobile systems (with virtual mobility) as source models. The only constraint is that
the methodology should support the use of ADs as application logic models. As an
example, the methodologies proposed in [40] and [10] can be used to derive Layered
Queueing Network and Extended Queueing Network models, respectively.

Now, let us consider case b. We discuss how we can exploit the Grassi-Mirandola
methodologies presented in section 5.2 [15, 17, 18]. To exploit them, the UML-PMS
model must satisfy the following constraints: only the MA virtual mobility pattern is
used, and triggering events for virtual mobility managers consists only of a subsets of
“start interaction” events among pairs of software components. If these constraints
hold, we note that it is relatively simple to map an AD (like the AD modeling the
mobility unaware application logic in the UML-PMS model) onto an equivalent
Sequence Diagram (SD), thus obtaining the SD used in [15, 17, 18] as mobility
unaware application logic model. Then, we can build the Collaboration Diagram (CD)
modeling the “interaction structure” by simply drawing the “boxes” modeling the
application components and linking together all the boxes corresponding to pairs of
directly interacting components (which components directly interact can be
determined by inspecting the SD); some of these links will be labeled with the
(possibly constrained) moveTo stereotype if some “start interaction” event between
the pair of linked components belong to the set of triggering events for mobility
managers of the original UML-PMS model. Finally, starting from the Deployment
Diagram (DD) and the associated mobility manager (if physical mobility is present)
of the UML-PMS model, we can easily build a DD where physical location changes
are represented by different instances of the moving entity connected by become
labeled links, as assumed in the [18] methodology. Figure 24 depicts an example of
this latter transformation. After these transformations have been performed, we can
build either a Markov Reward or an Extended Queueing Network model, following
the methodologies outlined in section 5.2 [15, 17, 18]. We point out that the

 Performance Analysis of Mobile Systems 149

exploitation of other methodologies presented in section 5.2 (like the Balsamo-
Marzolla methodology) appears less immediate.

Finally, let us consider case c. With respect to case b, the only difference is the
presence in the UML-PMS model of non deterministic mobility managers controlling
virtual mobility. As explained in previous sections, the explicit modeling of the designer
uncertainty has been already considered in the already reviewed Grassi-Mirandola
approach. We can exploit the transformation methodologies of that approach also in this
case, following a similar procedure as for case b above. The only difference is that for
those pairs of interacting components whose “start interaction” events trigger non
deterministic transitions in the UML-PMS mobility manager, the corresponding link in
the CD must be labeled with a moveTo? rather than moveTo stereotype.

Fig. 24. Transformation from a UML-PMS to a [18] model of physical mobility

Example 13. Let us consider the UML-PMS model of the travel agency example
presented in Example 7, restricting ourselves to the virtual mobility strategy modeled
by the mobility manager of figure 18(b). Since that manager includes non
deterministic transitions, we are in the case c discussed above. Hence, we can apply
the transformation methodologies presented in [15, 17, 18].

For this purpose, we make the following assumptions about the system:

• total size of the Travel Agency and Collector components: 1000;
• size of each request or reply message: 1;
• number of airline sites: 2;
• number of consecutive request-replay interaction between the collector and an

airline: N 1.

This information must be embedded within the original model using appropriate
SPT-PA annotations (not shown here). Our goal is to determine whether an MA based
virtual mobility strategy improves the system performance.

<<Device>>
<<MobileElem>>

PDA

at LocA at LocB

<<PhysicalMove>>
move(PDA, LocB)

<<PhysicalMove>>
move(PDA, LocA)

<<PAstep>>
PAdelay = ('assm', 'dist', exp (l1))

<<PAstep>>
PAdelay = ('assm', 'dist', exp(l2))

<<MobilityManager>>

<<Device>>
PDA

location = LocA

<<Place>>
LocA

<<Place>>
LocB

<<Node
Location>>

<<Device>>
PDA

location = LocB

<<become>><<become>>

<<PAstep>>
PAdelay = ('assm',

dist', exp(l2))

<<PAstep>>
PAdelay = ('assm',

dist', exp(l2))

150 V. Grassi

Let us consider the methodology presented in [15, 18]. The adopted TMN is a
Markov Decision Process (MDP), and the NFA we are interested in is the generated
network traffic. For this example, the derived MDP has three states, corresponding to
the three possible locations of the TravelAgency and Collector components (note that,
according to the strategy depicted in figure 18(b), these two components move
together). Solving the MDP model, we get the following results:

• if N 500, then the network traffic is minimized when no virtual mobility is
introduced in the system;

• if N>500, then the network traffic is minimized when virtual mobility is
introduced in the system, with the Travel Agency and Collector components
moving to each airline site they have to interact with.

Then, let us consider the methodology presented in [17]. In this case, the adopted
TMN is a mob?-EQN, and the NFA we are interested in is the system throughput. To
take into account the impact of contention on system resources, we introduce these
further system characterizations, besides those reported above:

• number of ticket information requests contemporarily present in the system: K =
3, 5, 10;

• the relative speeds of the processing nodes at the three sites and of the
communication network connecting them are as follow:

 - configuration C1: the three processing nodes are slower than the network;
 - configuration C2: the three processing nodes and the network have comparable

speed;
 - configuration C3: the three processing nodes are faster than the network;

Solving the mob?-EQN model (reported in example 12) we get the following
results (limiting the analysis to values of N less than 2000):

• in configuration C1, for any N 2000 and K = 3, 5, 10, the system throughput is
maximized when no virtual mobility is introduced in the system;

• in configuration C3, for any N 2000 and K = 3, 5, 10, the system throughput is
maximized when virtual mobility is introduced in the system, with the Travel
Agency and Collector components moving to each airline site they have to
interact with;

• in configuration C2, for any N 2000 and K = 3, the system throughput is
maximized following the optimal strategy for configuration C1; on the other
hand, for K = 5, 10, the system throughput is maximized following the optimal
strategy for configuration C3.

EndOfExample13

6 Conclusions

The primary goal of this tutorial has been to provide a structured view within the
domain of performance validation of mobile systems. The classification of the
presented approaches has been supported by a general framework (section 2)
classifying the “dimensions” each approach has to deal with.

 Performance Analysis of Mobile Systems 151

This review have been focused on two kinds of approaches for the systematic
modeling and analysis of NFA in mobile systems, based on the use of formal or semi-
formal SMNs.

The merit of formal languages comes primarily from their lack of ambiguity, and
their precise compositional features. One of the main drawbacks comes from the gap
between the skills they require to be used and the skills usually present in software
design teams. However, to be fair, we have to point out that all the notations
presented in section 4.1 are quite low level, as already remarked at the end of that
section, so that it can be hardly suggested to use them directly in the modeling of
realistic systems. Also the “high level” formal SMNs that have been briefly
mentioned in section 4.1 [6, 38] basically share the same problem. Probably, these
notations can play a significant role in providing as underlying model for more “user
friendly” SMNs (such as those based on the use of UML), giving them a sound
semantics. As an example, an attempt to bridge the gap between formal and semi-
formal SMNs can be found in [1] that defines a π-ADL based UML profile.

On the other hand, the use of UML as SMN from which to derive performance
models is not immune from problems as well, so the general problem of deriving
meaningful performance models from UML artifacts deserves further investigation by
itself. One of the problems comes from the fact that all the transformation
methodologies reviewed in section 5.2 (differently from that described in section 5.1)
have been basically empirically defined. This make difficult, for example, to reason
about the consistency among performance models derived from the same source model
using different methodologies. A promising way that could be pursued to deal with this
problem is the exploitation of the model driven methodologies, languages and tools
that have been and are going to be developed, aimed at providing a sound basis to the
problem of building and transforming software systems models [30, 32, 33].

Acknowledgements

This work is based on materials taken from [16, 19, 20]. The author would like to
thank his co-authors of those papers, Vittorio Cortellessa, Raffaela Mirandola and
Antonino Sabetta, for their contribution and for insightful discussions.

References

1. L. Alloui, F. Oquendo “The ArchWare architecture description language: UML profile for
architecting with ArchWare ADL” Deliverable DI.4b, ArchWare European RTD Project,
IST-2001-32360, June 2003.

2. S. Balsamo, M. Marzolla “Towards performance evaluation of mobile systems in UML”,
in Proc. of ESM'03, Napoli, Italy, October 2003, pp. 61-68.

3. L. Bass, P. Clements, R. Kazman, Software Architectures in Practice, Addison-Wesley,
New York, NY, 1998.

4. H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing “Extending activity diagrams to
model mobile systems” in NetObject-Days 2002 (M. Aksit, M. Mezini, R. Unland Eds.),
LNCS 2591, pp. 278-293, 2003.

152 V. Grassi

5. M. Bernardo “An algebra-based method to associate rewards with EMPA terms” (P.
Degano and R. Gorrieri eds.), LNCS 1256, Springer Verlag, 1997.

6. L. Bettini “Linguistic Constructs for Object-Oriented Mobile Code Programming & their
Implementations” PhD Thesis, Dip. di Matematica, Università di Siena, Italy, Feb. 2003,
on line at: http://music.dsi.unifi.it/xklaim/index.html.

7. G. Booch, J. Rumbaugh, and I.Jacobson, The Unified Modeling Language User Guide,
Addison Wesley, New York, 1999.

8. L. Cardelli, A.D. Gordon “Mobile ambients” Foundations of Software Science and
Computational Structures (M. Nivat ed.), LNCS 1378, Springer-Verlag, 1998, pp. 140-155

9. N. Carriero, D. Gelernter “Linda in context” Communications of the ACM, vol. 32, no.4,
1989, pp. 444-458.

10. V. Cortellessa, R. Mirandola “PRIMA-UML: a performance validation incremental
methodology on early UML diagrams” Science of Computer Programming, Elsevier
Science, vol 44, n.1, pp 101-129, July 2002.

11. R. De Nicola, G. Ferrari, R. Pugliese, B. Venneri “KLAIM: a kernel language for agents
interaction and mobility” IEEE Trans. on Software Engineering, vol. 24, no. 5, May 1998,
pp. 315-330

12. G. Ferrari, C. Montangero, L. Semini, S. Semprini “Mobile agents coordination in Mobadtl”
Proc. of 4th Int. Conf. on Coordination Models and Languages (COORDINATION’00),
(A. Porto and G.-C. Roman eds.), Springer-Verlag, Limassol, Cyprus, Sept. 2000.

13. A. Fuggetta, G.P. Picco, G. Vigna “Understanding code mobility” IEEE Trans. on
Software Engineering, vol. 24, no. 5, May 1998, pp. 342-361.

14. N. Gotz, U. Herzog, M. Rettelbach “Multiprocessor system design: the integration of
functional specification and performance analysis using stochastic process algebras” in
Performance Evaluation of Computer and Communication Systems (L. Donatiello and R.
Nelson eds.), LNCS 729, Springer-Verlag, 1993.

15. V. Grassi, R. Mirandola, “Modeling and performance analysis of mobile software
architectures in a UML framework” in Proc. <<UML2001>> Conference, LNCS 2185,
Springer Verlag, October 2001.

16. V. Grassi, V. Cortellessa, R. Mirandola “Performance validation of mobile software
architectures” LNCS 2495, Springer Verlag, 2002, pp. 346-373.

17. V. Grassi, R. Mirandola, “PRIMAmob-UML: a methodology for performance analysis of
mobile software architectures”, in WOSP 2002, Third International Conference on
Software and Performance, ACM, July 2002.

18. V. Grassi, R. Mirandola “Derivation of Markov Models for Effectiveness Analysis of
Adaptable Software Architectures for Mobile Computing” IEEE Trans. on Mobile
Computing, vol. 2, no. 2, Apr.-June 2003, pp. 114-131.

19. V. Grassi, R. Mirandola, A. Sabetta “A UML profile for mobile systems” in Proc.
<<UML2004>> Conference, LNCS 3273, Springer Verlag, Sept. 2004, pp. 128-142.

20. V. Grassi, R. Mirandola, A. Sabetta “UML based modeling and performance analysis of
mobile systems” in Proc. ACM Workshop on Modeling and Simulation of Wireless and
Mobile Systems, Oct. 2004.

21. H. Hermanns, U. Herzog, J.-P. Katoen “Process algebras for performance evaluation”,
Theoretical Computer Science, vol. 274, no. 1-2, 2002, pp. 43-87.

22. S.A.Hissam, G. Moreno, J. Stafford, K. Wallnau “Enabling Predictable Assembly”
Journal of Systems and Software, vol. 65, 2003, pp. 185-198.

23. R. Jain, Art of Computer Systems Performance Analysis, Wiley, New York, 1990.
24. A.D. Joseph, J.A. Tauber, M.F. Kaashoek “Mobile computing with the Rover toolkit”

IEEE Trans. on Computers, Feb. 1997

 Performance Analysis of Mobile Systems 153

25. P. Kosiuczenko “Sequence diagrams for mobility” in Proc. of MobIMod Workshop (J.
Krogstie editor), Tampere, Finland, October 2003.

26. C. Lindemann, A. Thummler “Performance analysis of time-enhanced UML diagrams
based on stochastic processes” in Proc. of 3rd Int. Workshop on Software and
Performance (WOSP 2002), Roma, Italy, July 2002, pp. 25-34.

27. A. Lopes, J.L. Fiadeiro “Adding mobility to software architectures” in Proc. FOCLASA
2003: Foundations of Coordination Languages and Software Architectures, Sept. 2003.

28. G. Manson et al. “FIPA Modeling Areas: Deployment and Mobility” on line at:
www.auml.org/auml/documents/DeploymentMobility.zip.

29. M. Margaritidis, G.C. Polyzos “Adaptation techniques for ubiquitous internet multimedia”
Wireless Communication and Mobile Computing, vol. 1, no.2, Apr.-June 2001, pp. 141-
163

30. “MDA Guide Version 1.0.1” OMGDocument omg/03-06-01, on line at:
www.omg.org/docs/omg/03-06-01.pdf.

31. J. Merseguer, J. Campos, E. Mena “Evaluating performance on mobile agents software
design”, in Actas de las VIII Jornadas de Concurrencia, pages 291-307. Cuenca, Spain:
Universidad de Castilla-la Mancha, June 2000.

32. “Meta Object Facility (MOF) 2.0 Core Specification”, OMG Adopted Specification ptc/03-
10-04, on line at: www.omg.org/docs/ptc/03-10-04.pdf.

33. “MOF 2.0 Query/Views/Transformations RFP”, OMG Document ad/2002-04-10, on line
at: www.omg.org/docs/ad/02-04-10.pdf.

34. R. Milner, Communication and Concurrency, Prentice Hall, 1989.
35. R. Milner, Communicating and Mobile Systems: the π-calculus, Cambridge Univ. Press,

1999.
36. B.D. Noble, M. Satyanarayanan, G.T. Nguyen, D.Narayanan, J.E. Tilton, J. Flinn, K.R.

Walker “Agile application-aware adaptation for mobility” in Proc. 16th ACM Symp. on
Operating Systems Principles, pp. 276-287, Oct. 1997

37. C. Nottegar, C. Priami, P. Degano “Performance evaluation of mobile processes via
abstract machines” IEEE Trans. on Software Engineering, vol. 27, no. 10, Oct. 2001, pp.
867-889.

38. F. Oquendo “π-ADL: an architecture description language based on the high-order typed
π-calculus for specifying dynamic and mobile software architectures” ACM Software
Engineering Notes, vol. 29, no. 4, May 2004.

39. D. Pattinson, M. Wirsig “Making components move: a separation of concerns approach” in
Proc. First Int. Symposium on Formal Methods for Components and Objects (FMCO
2002).

40. D.C. Petriu, H. Shen “Applying the UML Performance Profile: Graph Grammar-based
derivation of LQN models from UML specification”. Proc. of Performance TOOLS 2002,
London, England, April 14-17 2002, LNCS 2324, Springer Verlag.

41. G.P. Picco, G.-C. Roman, P.J. McCann “Reasoning about code mobility in Mobile
UNITY” ACM Transactions on Software Engineering and Methodology, vol. 10, no. 3,
July 2001, pp. 338-395.

42. M.L. Puterman, Markov Decision Processes, J. Wiley and Sons, 1994.
43. D. Sangiorgi “Expressing mobility in process algebras: first-order and higher-order

paradigms” PhD thesis, Univ. of Edinburgh, 1992.
44. M. Simeoni, P. Inverardi, A. Di Marco, S. Balsamo “Model-Based Performance Prediction

in Software Development: A Survey” IEEE Trans. on Software Engineering, Vol. 30, no.
5, May 2004, pp. 295- 310.

154 V. Grassi

45. C.U. Smith, Performance Engineering of Software Systems, Addison-Wesley, Reading,
MA, 1990.

46. C.U. Smith, L. Williams. Performance solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison Wesley, 2002.

47. “UML 2.0 Superstructure Specification” OMG Adopted Specification ptc/03-08-02, on
line at: www.omg.org/docs/ptc/03-08-02.pdf.

48. “UML Profile for Schedulability, Performance, and Time Specification”, OMG Adopted
Specification ptc/02-03-02, on line at: www.omg.org/docs/ptc/02-03-02.pdf.

49. U. Varshney and R. Vetter “Emerging mobile and wireless networks” Communications of
ACM, 43(6), pp. 73-81, June 2000.

A Methodology Based on Formal Methods
for Predicting the Impact

of Dynamic Power Management�

A. Acquaviva, A. Aldini, M. Bernardo, A. Bogliolo,
E. Bontà, and E. Lattanzi

Università di Urbino “Carlo Bo”,
Istituto di Scienze e Tecnologie dell’Informazione,
Piazza della Repubblica 13, 61029 Urbino, Italy

{acquaviva, aldini, bernardo, bogliolo, bonta, lattanzi}@sti.uniurb.it

Abstract. One of the major issues in the design of a mobile computing
device is reducing its power consumption. A commonly used technique
is the adoption of a dynamic power management policy, which modifies
the power consumption of the device based on certain run time con-
ditions. The introduction of the dynamic power management within a
battery-powered device may not be transparent, as it may alter the over-
all system behavior and efficiency. Here we present a methodology that
can be used in the early stages of the system design to predict the im-
pact of the dynamic power management on the system functionality and
performance. The predictive methodology, which relies on formal meth-
ods to compare the properties of the system without and with dynamic
power management, is illustrated through the application of its various
phases to a simple example of power-manageable system.

1 Introduction

Reducing the power consumption is a fundamental criterion in the design of
battery-powered devices typical of modern mobile embedded systems. Significant
power savings can be achieved at run time through the application of dynamic
power management (DPM) techniques [3], i.e. techniques that – based on run
time conditions – modify the power consumption of the devices by changing their
state or by scaling their voltage or frequency.

The approaches to DPM proposed in the literature have been classified into
deterministic schemes, predictive schemes, and stochastic optimum control
schemes. The schemes of the first class schedule the shutdown periods at fixed
time instants, possibly depending on the occurrence of some event. Instead, the
schemes of the second class attempt to predict the device usage behavior in the
future based on historical data patterns. Finally, the schemes of the third class

� Co-financed by Regione Marche within the CIPE 36/2002 framework.

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 155–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 A. Acquaviva et al.

make probabilistic assumptions – based on observations – about usage patterns
to formulate an optimization problem.

Whatever scheme is adopted, the introduction of the DPM within a mobile
computing device may have a non negligible impact on the overall system func-
tionality and performance. It is therefore of paramount importance to assess
such an impact before the DPM is introduced, in order to make sure that the
system behavior will not be significantly altered and that the quality of service
will not go below an acceptable threshold.

This objective can be achieved by following a methodology that helps pre-
dicting the effect of the DPM through the comparison of the functional and per-
formance characteristics of the system without and with DPM. Since it should
be applied in the early stages of the system design – in which a high level of
abstraction is admitted that favors the task of verifying properties – the predic-
tive methodology can take advantage of formal description techniques, like e.g.
stochastic process algebras [7] and stochastic Petri nets [2], as well as formal
analysis techniques, like e.g. equivalence checking [11] and model checking [10].
This paper describes and discusses a formal methodology introduced by the same
authors for predicting the impact of the application of a DPM strategy [1].

The rest of the paper is organized as follows. In Sect. 2 we present an in-
troduction to DPM including a brief survey of the most frequently adopted
techniques. In Sect. 3 we discuss the methodology based on formal methods to
predict the impact of the DPM on the system functionality and performance.
After recalling in Sect. 4 a particular specification language that provides all the
ingredients that are needed to support the predictive methodology, an applica-
tion of the methodology itself to a simple power-manageable mobile device is
illustrated in Sect. 5, 6, and 7. Finally, in Sect. 8 we draw some conclusions.

2 Dynamic Power Management

Electronic systems are designed to deliver peak performance, but they spend
most of their time executing tasks that do not require such a performance level.
For instance, hand-held personal digital assistants are mainly used to run inter-
active applications (such as personal organizers and text editors) whose main
task is capturing sparse input events, while cellular phones are reactive systems
that are usually idle waiting for incoming calls or user commands.

In general, electronic systems are subject to time-varying workloads. Since
there is a close relation between power consumption and performance, the capa-
bility of tuning at run time the performance of a system to its workload provides
great opportunity to save power.

Dynamic power management (DPM) techniques dynamically reconfigure an
electronic system by changing its operating mode and by turning its components
on and off in order to provide at any time the minimumperformance/functionality
required by the workload while consuming the minimum amount of power.

The application of DPM techniques requires i) power-manageable compo-
nents providing multiple operating modes, ii) a power manager having run-

A Methodology Based on Formal Methods 157

time control of the operating mode of the power-manageable components, and
iii) a DPM policy specifying the control rules to be implemented by the power
manager.

The simplest example of power-manageable hardware is a device that can be
dynamically turned on and off by a power manager that issues shutdown and
wakeup commands according to a given policy. When turned on, the device is
active and provides a given performance at the cost of a given power consump-
tion. When turned off, the device is inactive, hence provides no performance and
consumes no power. The workload of the device is a sequence of service requests
issued by a generic client.

If the workload keeps the device busy for 30% of time, up to 70% of energy can
be saved by turning the device off during idle periods. Under the assumption that
the device can be switched on and off instantaneously at no cost, the maximum
power saving can be achieved without performance penalty by means of a greedy
policy turning off the device right after each service accomplishment and turning
it on upon each incoming service request.

In all cases of practical interest, however, shutdown and wakeup transitions
have non-negligible costs both in terms of energy and in terms of time. Transition
costs make the design of DPM policies a non-trivial task for two main reasons.
First, a shutdown can be counterproductive if the idle period is not long enough
to compensate for the transition energy. Second, if a service request is issued
when the device is inactive, the wakeup time adds a delay to the service time
that may cause an unacceptable performance degradation.

In practice, transition costs limit the actual exploitability of low power states
and make it necessary to predict user idleness to take DPM decisions. In the rest
of this section we show how to describe a DPM system as a power state machine,
we provide a formal definition of exploitability of a low power state, we discuss
the issue of workload prediction, we briefly outline typical DPM strategies, and
we introduce a simple case study that will be used throughout the paper.

2.1 Power State Machine

As far as DPM is concerned, a power-manageable system (or component) can be
represented as a power state machine (PSM). Power states are operating modes
characterized by average performance and power values. They are called active if
they provide positive performance, inactive otherwise. Transitions among power
states are characterized by their costs (transition time and energy) and triggered
by DPM commands or service requests.

Many power-manageable components have only two power states and can
be represented by a PSM like the one shown in Fig. 1.a). Transitions from the
active state (on) to the inactive state (off) are triggered by a shutdown command
issued by the power manager, while wakeup transitions are triggered by incoming
service requests issued by the client.

Fig. 1.b) shows a more complex PSM with multiple active and inactive states,
representing a server with two processing units. The server is sensitive to shut-
down commands (sd) when idle. Wakeup transitions are triggered by incoming

158 A. Acquaviva et al.

eos

eos eos
sr sr

sr

sr

sr

2:0 2:1 2:2

1:0 1:1

off

sleep

(a) (b)

idle busy1

on2

on1

off

sleep

busy2

on

off

sd sr

sr

sd

sd

sd

Fig. 1. a) Power state machine of a two-state power-manageable system; b) power state

machine of a power-manageable system with 5 active states (labeled x:y, where x is

the number of active servers and y is the number of requests under processing) and

2 inactive states (sleep and off), representing a server with 2 CPUs

service requests (sr). The active states span the tradeoff between power and per-
formance, while the inactive states provide different tradeoffs between stand-by
power and wakeup cost.

2.2 Exploitability of Low Power States

We now define and discuss the exploitability of the inactive states of a power-
manageable component. Since any component needs to be active to deliver its
service, the inherent cost of putting it into an inactive state can be computed
as the sum of the costs of the shutdown and wakeup transitions needed to enter
and exit the inactive state starting from the closest active one:

Ttr = Tshutdown + Twakeup (1)

Ptr =
Tshutdown · Pshutdown + Twakeup · Pwakeup

Ttr
(2)

where Ttr is the overall transition time and Ptr is the average transition power.
If the transition power is greater than the active power (Pon), the transition to
the inactive state provides a power reduction if and only if the time spent in
the inactive state is long enough to compensate for the extra transition power.
If this is not the case, the transition is counterproductive. The minimum idle
period that makes it convenient to go to the inactive state is called break-even
time (Tbe) and can be computed as follows:

Tbe = Ttr + Ttr · Ptr + Pon

Pon − Poff
(3)

A Methodology Based on Formal Methods 159

The break-even time of an inactive state is closely related to its exploitability:
An inactive state is exploitable if and only if the workload contains idle periods
longer than its break-even time. Notice that the break-even time is a property of
the inactive state independent of the workload, while the exploitability depends
both on the break-even time and on workload statistics. For a given workload,
the lower the break-even time of an inactive state, the higher its exploitability.

The average power saved by entering an inactive state (off) during an idle
period of length Tidle > Tbe can be expressed as:

Psaved,off (Tidle) = (Pon − Poff) · Tidle − Tbe

Tidle
(4)

Needless to say, the lower the break-even time and the lower the power con-
sumption of the inactive state, the higher the energy saving. If multiple inactive
states are available, their exploitability and energy saving need to be evaluated
at each idle period. Given two inactive states (off1 and off2) of the same compo-
nent, if off2 has a longer break-even time and a higher power consumption than
off1 we say it is dominated by off1 since off1 is always more convenient than off2.

Fig. 2 shows the average power consumed by a system during an idle period of
length Tidle under the assumption that its low power states are carefully exploited
by an ideal power manager. The four curves refer to the four different inactive
states of the system. Notice that for Tidle < 5 no inactive state is exploitable and
the average power consumption is Pon. For larger idle periods, inactive states
can be exploited to reduce power consumption. Fig. 2 clearly shows that the
relative energy efficiency of the inactive states depends on Tidle. In particular,

0 10 20 30 40 50
Tidle

0.3Pon

0.4Pon

0.5Pon

0.6Pon

0.7Pon

0.8Pon

0.9Pon

1Pon

A
ve

ra
ge

 p
ow

er

OFF1: Tbe = 10, Poff = 0.6Pon
OFF2: Tbe = 5, Poff = 0.5Pon
OFF3: Tbe = 7, Poff = 0.3Pon
OFF4: Tbe = 15, Poff = 0

ON

OFF2

OFF3

OFF4

Fig. 2. Average power consumption during an idle period of length Tidle achieved by

exploiting four different inactive states

160 A. Acquaviva et al.

for 5 < Tidle < 12 the best choice is off2, for 12 < Tidle < 34 the best choice is
off3, for Tdile > 33 the best choice is off4. The inactive state off1 is never the
best choice since it is dominated by off2, which has a lower power consumption
and a shorter break-even time.

The inactive states of properly designed power-manageable components do
not dominate each other, rather, they provide different tradeoffs between break-
even time and power consumption.

Given a power-manageable system, an ideal power manager achieves the best
energy saving from each idle period. To this purpose, it needs to evaluate the ex-
ploitability and energy savings of all inactive states, then chooses the exploitable
state (if any) providing the highest savings. In addition, if no performance degra-
dation is tolerated, the power manager needs to wake up the system right in time
to serve the next service request. Similar considerations apply to the choice of
the best active state to be used to serve each request.

Referring, for the sake of simplicity, to the two-state power-manageable sys-
tem of Fig. 1.a), the average power saving achieved by the ideal power manager
without impairing performance can be expressed by:

Psaved,off = (Pon − Poff) · T avg
idle>Tbe

− Tbe

T avg
idle

· (1 − FTidle
(Tbe)) (5)

where T avg
idle>Tbe

is the average length of idle periods longer than Tbe, T avg
idle is

the average length of all idle periods, and FTidle
(Tbe) is the probability of idle

periods shorter than Tbe (FTidle
being the probability distribution of the idle

period lengths).

2.3 Workload Prediction

The ideal power manager described so far exploits the complete a priori knowl-
edge of the workload. In particular, we implicitly assumed that the ideal power
manager knows in advance the length of each idle period Tidle. In real-world
situations this is usually not the case. The workload is unknown and Tidle has
to be regarded as a random variable whose distribution needs to be estimated
at run time.

The uncertainty on the actual value of Tidle has two main consequences.
First, the power manager cannot take optimal decisions, thus achieving a power
saving that is usually well below the theoretical upper bound of Eq. 5. Second,
the power manager cannot guarantee to wake up the system in time to serve
incoming requests with no delay. Hence, power savings are always achieved at
the cost of some performance penalty.

Workload predictors are used to reduce the uncertainty and help the power
manager take the best possible decisions. In particular, we are interested in
predicting idle periods long enough to exploit a given inactive state. In symbols,
we want to predict the occurrence of the event e = {Tidle > Tbe}. Good predictors
should minimize the risk of mispredictions. We call over-prediction (resp. under-
prediction) a predicted idle period longer (resp. shorter) than the actual one.

A Methodology Based on Formal Methods 161

Over-predictions give rise to performance penalties, while under-predictions give
rise to power waste.

The quality of an estimator can be expressed in terms of safety, that is the
complement of the probability of over-predictions, and efficiency, that is the
complement of the probability of under-predictions.

In general, the prediction of an incoming event (e) is based on the observation
of a past event (o) under the assumption that the conditional probability Pr(e|o)
is greater than the marginal probability Pr(e). A totally safe predictor never
makes over-predictions (Pr(e|o) = 1), while a totally efficient predictor never
makes under-predictions (Pr(o|e) = 1) [3, 17, 20].

Since no ideal predictors exist, DPM trades off performance for power. The
problem of designing optimal DPM policies can be formulated either as a multi-
objective optimization problem (finding the policy that minimizes a cost function
that takes both power and performance into account) or as a constrained op-
timization problem (finding the policy that minimizes the power consumption
under given performance constraints).

We remark that predictors exploit thecorrelation between the observed evento
and the target (future) event e. If the workload is memoryless there is no correla-
tion between past and future input events (in symbols, Pr(e|o) = Pr(e)) making
any predictor ineffective.

2.4 Survey of DPM Strategies

Providing a thorough overview of existing approaches to DPM is beyond the
scope of this paper [3, 8]. Here we only propose general classification criteria
derived from the discussion conducted so far and we use them to describe and
compare the most commonly used DPM strategies.

We classify DPM techniques on the basis of i) the predictor they use, ii) the
degree of control granted to the power manager, and iii) the nature of the deci-
sions it takes.

Existing predictors differ from each other both for the target of the prediction
and for the observed history used to make predictions. As far as the exploitation
of an inactive state is concerned, the prediction target may be either the occur-
rence probability of idle periods longer than the break-even time, or the expected
length of the next idle period. Similarly, predictions may be based either on the
average length of the last n idle periods, or on the length of the last activity
burst, or on the first part of the current idle period.

Depending on the degree of control that the power manager has on the sys-
tem, we distinguish between two main classes of DPM techniques. We call shut-
down techniques those in which the power manager can only trigger shutdown
transitions, while wakeup transitions are triggered by incoming requests. We call
preemptive techniques those in which the power manager may issue both shut-
down and wakeup commands and tries to preemptively wake up the system in
order to reduce performance penalties.

Finally, we distinguish between deterministic and stochastic DPM policies.
Deterministic policies take deterministic decisions based on the observed work-

162 A. Acquaviva et al.

ing conditions: the same decision is taken whenever the same conditions oc-
cur. Stochastic policies take randomized decisions whose probabilities depend
on the observed working conditions: different decisions may be taken under the
same conditions.

Timeout-Based Shutdown. The most widely used DPM techniques make use
of timeouts to issue shutdown commands. Whenever a new idle period begins, a
timer of duration Tto is started. If the workload is still idle after Tto, a shutdown
command is issued.

According to the classification criteria introduced in Sect. 2.4, timeout-based
shutdown policies observe the elapsed idle time (o) to predict the duration of
the remaining part of the idle period. They are classified as shutdown techniques
since wakeup transitions are usually triggered by incoming requests, and they
are deterministic in nature.

Using the elapsed idle time to estimate the length of the current idle period
has two disadvantages. First, the system is kept active while waiting for the
timeout to elapse, thus missing the opportunity of saving energy during the first
part of each idle period. Second, since the shutdown is issued when the timeout
has elapsed, idle periods are exploitable only if Tidle > Tbe + Tto.

On the other hand, the key advantage of timeout-based techniques is that
they infer the exploitability of an idle period based on the observation of the first
part of the same idle period. Hence, there is usually a good correlation between
the target event e = {Tidle > Tbe + Tto} and the observed event o = {Tidle >
Tto}. This is however not always the case. If the idle times are exponentially
distributed, the elapsed time provides no information about the duration of the
remaining part of the idle period.

Preemptive Wakeup. Preemptive wakeup techniques aim at reducing the per-
formance penalty caused by the wakeup time. To this purpose, they estimate the
duration of the incoming idle period (Tidle) both to evaluate its exploitability
and to decide when to issue preemptive wakeup commands.

Denoted by T̃idle the estimated length of an incoming idle period, if T̃idle >
Tbe a shutdown command is issued at the beggining of the idle period and a
timer is started to trigger a wakeup transition after T̃idle − Twakeup.

The most critical issue of preemptive techniques is the accuracy of the pre-
diction. Although several estimators have been proposed [17, 20], their accuracy
is very low and strongly dependent on workload statistics. The efficiency (resp.
safety) of the estimator can be manually adjusted by adding (resp. subtracting)
proper margins to the estimated value of T̃idle.

Stochastic Control. Stochastic control techniques implement randomized poli-
cies that associate nondeterministic decisions with each observed condition.

Although the added value of nondeterminism is not intuitive, it has been
shown that randomized policies provide best solutions to constrained optimiza-
tion problems [4]. This can be shown with a simple example of a two-state power-
manageable system with shutdown transitions triggered by external commands

A Methodology Based on Formal Methods 163

issued by the power manager and wakeup transitions triggered by incoming re-
quests. Assume that the power manager has to take decisions at the beginning
of each idle period and that the only information available is a good prediction
of exploitability. A deterministic policy would issue shutdown commands at the
beginning of each exploitable idle period. Suppose that 50% of the idle periods
are exploitable, and that each service request is followed by an idle period. Also,
assume that the system takes one time unit to wake up. All service requests
issued by the client after an exploitable period will experience a service delay of
one time unit due to wakeup. The performance penalty caused by the DPM is
an average delay of 0.5 time unit per request.

Now assume that only an average delay of 0.1 time unit per request is tol-
erated by the workload. The deterministic policy described so far cannot be
applied since it does not meet performance constraints. On the other hand, the
only deterministic policy that meets the constraints is a trivial policy that keeps
the system always on, providing no power savings.

The best solution to the constrained optimization problem is provided by
a randomized policy that issues shutdown commands with probability 0.2 at
the beginning of each exploitable idle period. In this way only 10% of service
requests experience a delay of one time unit (causing an average delay of 0.1 time
unit per request) and 20% of exploitable idle periods are effectively exploited to
save power.

If the system and the workload can be modeled as Markov chains, close
solutions to constrained policy optimization problems can be found in polynomial
time [4].

2.5 An Example of Power-Manageable System

We conclude this section by introducing a simple example of power-manageable
system, which will be used in the rest of the paper as a case study to illustrate
the predictive methodology. The example is concerned with a battery-powered
server for remote procedure calls. The overall system is depicted in Fig. 3.

The client (C) synchronously interacts with the server (S) through a full-
duplex radio channel implemented by two half-duplex radio channels: RCS, from
C to S, and RSC, from S to C. RCS is used by the client to send remote procedure
calls to the server, while RSC is used by the server to send the results back to the
client. The server also interacts with the DPM, which issues shutdown commands

DPM S

RSC

RCS

C

call call
busy

idle

shutdown

results results

Fig. 3. Power-manageable server for remote procedure calls

164 A. Acquaviva et al.

in order to put the server in a low power inactive state whenever appropriate.
Two more signals, idle and busy, are used by the server to notify the DPM about
every change of its service state.

In its easiest implementation, the blocking client issues a call, waits for the
results, then takes some time to process the results before issuing the next call.
A simple timeout mechanism can be employed by the client to resend a call
whenever the waiting time exceeds a given threshold. This can happen because
the half-duplex radio channels are not ideal, hence they may introduce both a
long propagation delay and a packet loss probability.

The behavior of the server is characterized through the following four states:

– Idle: the server is waiting for a call to arrive.
– Busy: the server is processing a call.
– Sleeping: the server has been shut down by the DPM.
– Awaking: the server has been woken up by the arrival of a call.

The server is sensitive to shutdown commands in the idle state. However, the
server may also be sensitive to shutdown commands when busy, in which case
a shutdown can interrupt the call processing. In the sleeping state the server
consumes no power. The awaking state is a power consuming state in which the
server temporarily resides while going from sleeping to busy.

Finally, the DPM sends shutdown commands to the server at certain time
instants, possibly based on the knowledge of the current state of the server.
There are two different policies:

– Trivial policy: the DPM issues shutdown commands with a given frequency,
independently of the current state of the server.

– Timeout policy: shutdown commands are issued by the DPM upon the ex-
piration of a fixed or random timeout after the server has entered the idle
state.

3 Predicting the Impact of DPM

The DPM activities can be divided into two classes. The activities of the first
class are the ones that modify the state of the power-manageable device, while
the activities of the second class are the ones that collect information about the
state of the power-manageable device. When the DPM is capable of modifying
the state of the power-manageable device, we say that the DPM is enabled.
On the contrary, when the state-modifying activities of the DPM cannot be
performed, we say that the DPM is disabled.

Whenever the DPM is enabled within a battery-powered device, the behavior
and the efficiency of the overall system may be altered. It is therefore impor-
tant to assess in the early stage of the system design the impact of the DPM.
The objective is to check that the DPM does not significantly change the sys-
tem functionality and does not cause an intolerable degradation of the system
performance.

A Methodology Based on Formal Methods 165

by
 c

on
st

ru
ct

io
n

co
rr

ec
t

by
 c

on
st

ru
ct

io
n

co
rr

ec
t

va
lid

at
e

DPM disabled

DPM disabled

DPM disabled

F

M

G
simul. perf. comp.

noninterf. analysis

analyt. perf. comp.

DPM enabled

DPM enabled

DPM enabled

F

M

G

va
lid

at
e

tim
in

g
tim

in
g

re
pl

. g
en

.
ad

d
ex

p.

re
pl

. g
en

.
ad

d
ex

p.

tim
in

g
tim

in
g

Fig. 4. Models and phases of the predictive methodology

In this section we present a methodology to predict the effect of the DPM on
the functionality and the performance of a mobile battery-powered computing
device. The methodology is shown in Fig. 4. As can be seen, the methodology
requires to build three pairs of models of the system – functional, Markovian
and general – each of which is incrementally obtained from the previous one by
adding further details. Within each pair, one model refers to the system with the
DPM disabled, while the other one refers to the system with the DPM enabled.
The functional, Markovian and general models are then compared two by two
in three different phases, in order to investigate the DPM impact on the system
functionality and performance.

The three phases of the methodology are described below and will be illus-
trated in more detail in Sect. 5, 6, and 7, respectively, through the case study
introduced in Sect. 2.5.

3.1 Noninterference Analysis of the Functional Models

The two models considered in the first phase of the methodology address only the
behavior of the system. These models are used to check whether the introduction
of the DPM alters the system functionality or not.

In order to assess the functional transparency of the DPM, the methodology
resorts to the noninterference analysis approach [14]. The general idea behind
this approach is to view a system execution as an information flow and to consider
that a group of system users (high users), employing a certain set of commands,
is not interfering with another group of system users (low users) if what the first
group of users can do with those commands has no effect on what the second
group of users can see. This approach has traditionally been applied for security
purposes, as noninterference analysis can reveal direct and indirect information
flows that violate the access policies based on assigning different access clearances
to different user groups.

In the framework of the DPM-related methodology, the noninterference anal-
ysis is used to check whether the DPM interferes with the behavior of the system

166 A. Acquaviva et al.

as observed by the system clients. In fact, from the noninterference perspective,
the state-modifying activities carried out by the DPM are the only high ones,
whereas all the activities carried out by the system clients are the only low ones.

The predictive methodology adopts the version of the noninterference anal-
ysis approach based on equivalence checking [13]. Establishing noninterference
thus amounts to verifying whether – from the client standpoint – the functional
model of the system with the state-modifying activities of the DPM being made
unobservable is equivalent to the functional model of the system with the same
activities being prevented from taking place (i.e. with the DPM disabled). In
the verification process, all the activities that are classified as being neither high
nor low have to be made unobservable as well.

The formal notion of equivalence that is employed to carry out this task is
weak bisimulation [18], which relates two system models whenever they are able
to mimic each other’s behavior while abstracting from unobservable activities.
Should the two functional models above turn out not to be weakly bisimilar, a
Hennessy-Milner logic formula can be automatically obtained that distinguishes
the two models, thereby explaining why they are not equivalent [12]. This formula
can then be used as a diagnostic piece of information to guide the modification of
the behavior of the DPM and/or the system in order to achieve noninterference.

It is worth pointing out that establishing noninterference prior to the intro-
duction of a specific timing of the system activities, which may rule out some
behaviors, ensures that the DPM is functionally transparent in itself, not because
of the adoption of particular assumptions.

3.2 Analytical Performance Comparison of the Markovian Models

Once functional transparency has been achieved, it has to be investigated whether
the DPM affects the system performance. While in general the impact of the
DPM on the system behavior can be avoided by means of suitable modifica-
tions, it is practically impossible that the introduction of the DPM does not
alter the quality of the service delivered by the system. Therefore, the purpose
of this further investigation is to find a balance between the power consumption
and the overall system efficiency.

In the second phase of the methodology the two functional models are made
more complete by specifying the timing of each system activity, thus allowing
for performance evaluation. Since the activity durations are expressed in this
phase through exponentially distributed random variables, the derived models
are Markovian models yielding continuous-time Markov chains.

These models do not need to be validated against the corresponding func-
tional models, since they are directly obtained from the latter by attaching
exponential delays to the state transitions. In other words, the two Markovian
models are consistent by construction with the corresponding functional mod-
els, in the sense that the state space of each of the two Markovian models is
isomorphic (up to the transition delays) to the state space of the corresponding
functional model. As a consequence, whenever the two functional models meet
noninterference, then so do their corresponding Markovian models.

A Methodology Based on Formal Methods 167

When applying the methodology in practice, the correctness by construction
and the resulting preservation of noninterference depend on the precise way in
which the functional models are extended as well as on the expressive power
of the formalism adopted to develop the models. As an example, in order to
measure the percentage of time that the system spends in states characterized
by different power consumption levels, it may be necessary to introduce self-
looping transitions (with arbitrary exponential delays) in the considered states.
Since they are neither high nor low, hence they can be made unobservable, such
additional transitions do not affect noninterference.

More troublesome can be the specification of the fact that the duration of
certain activities is negligible from the performance viewpoint, which is accom-
plished through the so called immediate transitions provided by some formalisms
(see, e.g., [2, 7]). Since the immediate transitions take precedence over the ex-
ponentially timed ones, their use may alter the state space of the Markovian
models with respect to the state space of the corresponding functional models.
As a consequence, noninterference may not be preserved. Assuming that the
immediate transitions are consistently used in the two Markovian models, the
noninterference analysis should be repeated in the second phase only if some
of the state-modifying activities of the DPM are characterized through imme-
diate transitions. The reason is that, since these activities are the only ones to
be enabled in one model and disabled in the other model, they are the only
source of potential violation of weak bisimulation when they take precedence
over other activities.

The two Markovian models can be solved analytically through standard tech-
niques [21]. This opens the way to the comparison of the system with the DPM
disabled and with the DPM enabled on the basis of certain performance mea-
sures – like power consumption, system throughput, radio channel utilization,
and quality of service – obtained when varying the DPM operation rates. Such
performance indices can easily be expressed through a combined use of cumula-
tive and instantaneous rewards [16]. This investigation of the impact of the DPM
from the performance viewpoint can then be exploited to tune the frequency of
the DPM operations, in such a way that a reasonable tradeoff between the power
consumption and the overall system efficiency is achieved.

3.3 Simulative Performance Comparison of the General Models

In the third phase of the methodology the two Markovian models are made more
realistic by replacing the exponential distributions with general distributions
wherever necessary to better characterize the actual delays.

Since substituting general distributions for exponential distributions may not
be a smooth process, the general models may need to be validated against the
corresponding Markovian models. For instance, in those formalisms that do not
directly support general distributions (see, e.g., [7]), major modifications of the
Markovian models are needed in addition to the distribution replacement. In
such a case it is necessary to assess the consistency of each of the two general
models with respect to the corresponding Markovian model. This is accomplished

168 A. Acquaviva et al.

by verifying that both models result in comparable values for the considered per-
formance measures, when substituting exponential distributions back for general
distributions in the general model in a way that preserves their expected values.

As another example, noninterference may not be preserved. In fact, the re-
placement of exponential distributions with general distributions no longer hav-
ing infinite support may alter the state space of the general models with respect
to the state space of the corresponding Markovian models. This is similar to what
happens in the Markovian models when using immediate transitions. Therefore,
assuming that the distributions with finite support are consistently used in the
two general models, the noninterference analysis should be repeated in the third
phase only if some of the state-modifying activities of the DPM are characterized
through distributions with finite support.

Once the validation succeeds, the two general models can be simulated via
standard techniques [22] in order to estimate at a certain confidence level the same
performance measures considered in the second phase with the DPM disabled and
with the DPM enabled. The comparison of the resulting figures should then guide
the decision about whether it is worth introducing the DPM in certain realistic
scenarios. If so, the figures should also help tuning the DPM operation rates with-
out compromising the achievement of the desired level of quality of service.

We conclude by observing that the second and the third phase both refer
to a performance comparison of the system with the DPM disabled and with
the DPM enabled. Since the third phase addresses more realistic scenarios, one
may want to skip the second phase, thus going directly from the first one to the
third one. Although possible, this is not recommended. In fact, even though the
Markovian models may not be realistic, the performance figures obtained from
their analytically derived solution constitute the only means to validate the sim-
ulation results of the general models in the early stages of the system design.
Moreover, skipping the second phase would introduce a gap in the incremental
modeling process enforced by the methodology, which may likely cause inconsis-
tencies between the general models and the corresponding functional models.

4 Supporting the Application of the Methodology

The application of the predictive methodology requires a sufficiently expressive
specification language, in order to build the functional, Markovian and general
models with the DPM disabled and with the DPM enabled. In addition to that,
it requires a software tool equipped with the necessary analysis routines, so
that the effect of the DPM on the system functionality and performance can
be assessed by comparing the properties of the models written in the language
mentioned before.

Although the predictive methodology does not depend on a specific notation,
in order to illustrate it we need to choose one. Here we use the architectural
description language Æmilia [7], together with its companion tool TwoTowers [5],
as they provide all the ingredients that are necessary to support the application
of the methodology.

A Methodology Based on Formal Methods 169

Table 1. Structure of an Æmilia description

ARCHI TYPE �name and formal parameters�

ARCHI ELEM TYPES
ELEM TYPE �definition of the first architectural element type�
...

...
ELEM TYPE �definition of the last architectural element type�

ARCHI TOPOLOGY
ARCHI ELEM INSTANCES �declaration of the architectural element instances�
ARCHI INTERACTIONS �declaration of the architectural interactions�
ARCHI ATTACHMENTS �declaration of the architectural attachments�

[BEHAV VARIATIONS
[BEHAV HIDINGS �declaration of the behavioral hidings�]
[BEHAV RESTRICTIONS �declaration of the behavioral restrictions�]
[BEHAV RENAMINGS �declaration of the behavioral renamings�]]

END

We now give a brief overview of Æmilia and TwoTowers, followed by an
example in which the Æmilia functional models are built for the case study
introduced in Sect. 2.5.

4.1 Æmilia and TwoTowers

An Æmilia description represents an architectural type. This is an intermediate
abstraction between a single system and an architectural style. It consists of a
family of systems sharing certain constraints on the observable behavior of the
system components as well as on the system topology. As shown in Table 1,
the description of an architectural type in Æmilia starts with the name and the
formal parameters of the architectural type and is composed of three sections.

The first section defines the types of components that characterize the system
family. In order to include both the computational components and the connec-
tors among them, these types are called architectural element types (AETs).
The definition of an AET starts with its name and formal parameters and con-
sists of the specification of its behavior and its interactions. The behavior has
to be provided in the form of a list of sequential defining equations written in a
verbose variant of the stochastic process algebra EMPAgr [6]. The interactions
are those EMPAgr action types occurring in the behavior that act as interfaces
for the AET. Each of them has to be equipped with two qualifiers, which es-
tablish whether it is an input or output interaction and the multiplicity of the
communications in which it can be involved, respectively. All the other action
types occurring in the behavior are assumed to represent internal activities.

The second section defines the architectural topology. This is specified in
three steps. First we have the declaration of the instances of the AETs (called
AEIs) with their actual parameters, which represent the real system components

170 A. Acquaviva et al.

and connectors. Then we have the declaration of the architectural (as opposed
to local) interactions, which are some of the interactions of the AEIs that act
as interfaces for the whole system family. Finally we have the declaration of
the directed architectural attachments among the local interactions of the AEIs,
which make the AEIs communicate with each other.

The third section, which is optional, defines some variations of the observable
behavior of the system family. This is accomplished by declaring some action
types occurring in the behavior of certain AEIs to be unobservable, prevented
from occurring, or renamed into other action types. Such a section is quite useful
e.g. when defining a model of the system with the DPM disabled, as it can
be obtained from the model of the system with the DPM enabled by simply
restricting the state-modifying activities of the DPM.

− LTL Model Checker

− Strong Bisimulation Equivalence Verifier
− Weak Bisimulation Equivalence Verifier
− Strong Markovian Bisimulation Equivalence Verifier
− Weak Markovian Bisimulation Equivalence Verifier

− Parser
− Semantic Model Size Calculator
− Semantic Model Generator

GRAPHICAL USER INTERFACE

AEmilia COMPILER:

EQUIVALENCE VERIFIER:

MODEL CHECKER (via NuSMV):

SECURITY ANALYZER:

− Stationary/Transient State Probability Calculator

− Simulator

PERFORMANCE EVALUATOR:

− Noninterference Analyzer
− Nondeducibility on Composition Analyzer

− Stationary/Transient Reward−Based Measure Calculator

Fig. 5. Architecture of TwoTowers

A Methodology Based on Formal Methods 171

Æmilia is the input language of TwoTowers, a software tool for the functional
verification, security analysis, and performance evaluation of computer, commu-
nication and software systems. The architecture of TwoTowers is depicted in
Fig. 5. As can be seen, the study of the properties of the Æmilia specifications is
conducted in TwoTowers through a mix of techniques. Among them we mention
equivalence verification with diagnostics, symbolic model checking with diagnos-
tics via NuSMV [9], information flow analysis with diagnostics, reward Markov
chain solution, and discrete event simulation.

4.2 Æmilia Functional Models of the Case Study

Since a thorough description of Æmilia is beyond the scope of this chapter, we
use the remote procedure call case study to exemplify the key elements of the
language. In particular, we consider a simplified version of the system in which
the radio channels are perfect (so that the blocking client does not need to use
any timeout mechanism), the DPM sends shutdown commands independently of
the current state of the server (hence the server does not need to notify the DPM
about its state changes), and the server is sensitive to shutdown commands both
in the idle state and in the busy state.

The Æmilia specification of the functional model of the remote procedure call
case study with the DPM enabled starts with its name and the indication that
there are no formal parameters:

ARCHI_TYPE RPC_DPM_F(void)

The first AET that we define is the blocking client, which synchronously
communicates with the power-manageable server through the radio channel. It
repeatedly issues a call, waits for the results, and processes them. While the result
processing is an internal activity, the issue of a call is an output interaction and
the reception of the results is an input interaction:

ELEM_TYPE Client_Type(void)

BEHAVIOR

Client(void; void) =
<send_rpc_packet, _> . <receive_result_packet, _> .
<process_result_packet, _> . Client()

INPUT_INTERACTIONS
UNI receive_result_packet

OUTPUT_INTERACTIONS
UNI send_rpc_packet

The second AET that we define is the half-duplex radio channel. Since it is
perfect, it does not lose any packet, so it repeatedly waits for a packet, propagates
it, and delivers it. While the packet propagation is an internal activity, the packet
reception is an input interaction and the packet delivery is an output interaction:

172 A. Acquaviva et al.

ELEM_TYPE Radio_Channel_Type(void)

BEHAVIOR

Radio_Channel(void; void) =
<get_packet, _> . <propagate_packet, _> .
<deliver_packet, _> . Radio_Channel()

INPUT_INTERACTIONS
UNI get_packet

OUTPUT_INTERACTIONS
UNI deliver_packet

The third AET that we define in the AET section of the Æmilia specification
describes the server. Its behavior is given by five defining equations. The first
equation is associated with the idle state, while the second and the third equation
represent the busy state. Two equations are necessary for this state because two
activities are carried out – processing the call and sending the results back to
the client – each of which can be interrupted by the reception of a shutdown
command from the DPM. The fourth and the fifth equation are concerned with
the sleeping and the awaking state, respectively. While the processing of a call
and the awaking represent internal activities, the reception of a call or of a
shutdown command are input interactions and the sending of the results is an
output interaction:

ARCHI_ELEM_TYPES

ELEM_TYPE Server_Type(void)

BEHAVIOR

Idle_Server(void; void) =
choice {
<receive_rpc_packet, _> . Busy_Server(),
<receive_shutdown, _> . Sleeping_Server()

};

Busy_Server(void; void) =
choice {
<prepare_result_packet, _> . Responding_Server(),
<receive_shutdown, _> . Sleeping_Server()

};

Responding_Server(void; void) =
choice {
<send_result_packet, _> . Idle_Server(),
<receive_shutdown, _> . Sleeping_Server()

};

A Methodology Based on Formal Methods 173

Sleeping_Server(void; void) =
<receive_rpc_packet, _> . Awaking_Server();

Awaking_Server(void; void) =
<awake, _> . Busy_Server()

INPUT_INTERACTIONS
UNI receive_rpc_packet; receive_shutdown

OUTPUT_INTERACTIONS
UNI send_result_packet

The last AET that we define is the DPM. It simply issues shutdown com-
mands that are periodically sent to the server even when this is busy. The only
activity carried out by the DPM is an output interaction:

ELEM_TYPE DPM_Type(void)

BEHAVIOR

DPM_Beh(void; void) =
<send_shutdown, _> . DPM_Beh()

INPUT_INTERACTIONS
void

OUTPUT_INTERACTIONS
UNI send_shutdown

In the architectural topology section of the Æmilia specification we declare
one instance for the server, client and DPM types together with two instances
of the half-duplex radio channel type, followed by the declaration of the attach-
ments between their interactions as prescribed by Fig. 3 up to the busy and idle
triggers:

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES
C : Client_Type();
RCS : Radio_Channel_Type();
RSC : Radio_Channel_Type();
S : Server_Type();
DPM : DPM_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM C.send_rpc_packet TO RCS.get_packet;

174 A. Acquaviva et al.

FROM RCS.deliver_packet TO S.receive_rpc_packet;
FROM S.send_result_packet TO RSC.get_packet;
FROM RSC.deliver_packet TO C.receive_result_packet;
FROM DPM.send_shutdown TO S.receive_shutdown

END

We conclude by observing that the Æmilia specification of the functional
model of the system with the DPM disabled can easily be obtained from the
previous Æmilia specification by adding what follows after the architectural
topology section:

BEHAV_VARIATIONS

BEHAV_RESTRICTIONS
RESTRICT DPM.send_shutdown

5 Comparing the Functional Models

In the first phase of the predictive methodology we need two functional models
of the system – one with the DPM disabled and the other one with the DPM
enabled – in order to assess the functional transparency of the DPM through
noninterference analysis. We now show how to proceed by means of the remote
procedure call case study.

When using Æmilia, there are two possibilities. The first one is to add suitable
behavioral variations to both functional models presented in Sect. 4.2. We recall
that a behavioral variation declared for an action type affect all the action types
to which the first action type is attached. The functional model in which the
DPM is considered to be disabled must prevent the shutdown commands from
being issued and hide all the action types that are not concerned with the client:

BEHAV_VARIATIONS

BEHAV_HIDINGS
HIDE RCS.INTERNALS;
HIDE RSC.INTERNALS;
HIDE S.receive_rpc_packet;
HIDE S.send_result_packet;
HIDE S.INTERNALS

BEHAV_RESTRICTIONS
RESTRICT DPM.send_shutdown

while the functional model in which the DPM is considered to be enabled must
hide the shutdown commands as well:

A Methodology Based on Formal Methods 175

BEHAV_VARIATIONS

BEHAV_HIDINGS
HIDE RCS.INTERNALS;
HIDE RSC.INTERNALS;
HIDE S.ALL

After modifying the two functional models in this way, the weak bisimulation
equivalence verifier of TwoTowers can be applied to them.

A more direct way to assess with TwoTowers the functional transparency of
the DPM is to use the noninterference analyzer. In this case the first functional
model of Sect. 4.2 is enough, provided that in an auxiliary specification we de-
clare which action types are high and which are low. Based on the discussion of
Sect. 3.1, reflected in Fig. 3 by the different colors of the various system compo-
nents, the only action type of the DPM is the only high one while those of the
client are the only low ones, with all the other action types being unimportant:

HIGH DPM.send_shutdown

LOW C.send_rpc_packet;
C.receive_result_packet;
C.process_result_packet

Given this additional specification, the noninterference analyzer of TwoTowers
automatically produces the two functional models with behavioral variations
described above and check them for weak bisimulation equivalence.

The simplified version of the remote procedure call case study of Sect. 4.2 fails
the noninterference check. More precisely, when submitting the Æmilia specifi-
cation of the first functional model together with the additional specification
above to the noninterference analyzer of TwoTowers, the outcome is negative
and the following Hennessy-Milner logic formula is returned, where “#” denotes
the synchronization of two attached interactions:

EXISTS_WEAK_TRANS(
LABEL(C.send_rpc_packet#RCS.get_packet);
REACHED_STATE_SAT(
NOT(EXISTS_WEAK_TRANS(

LABEL(RSC.deliver_packet#C.receive_result_packet);
REACHED_STATE_SAT(TRUE)

)
)

)
)

This formula means that the functional model with the high action types be-
ing hidden admits a computation path along which no results are returned to the

176 A. Acquaviva et al.

client (synchronization of RSC.deliver packet with C.receive result packet)
after that the client has issued a call (synchronization of C.send rpc packet
with RCS.get packet), whereas this path does not exist in the functional model
with the high action types being prevented.

Recalled that the high actions coincides with the state-modifying activities
performed by the DPM, the reason why the modal logic formula above distin-
guishes the two functional models is that in the latter model the DPM is disabled,
while in the former model the DPM is enabled and can shut down the server
while it is processing a call. Since the client is blocking and does not use any
timeout mechanism after sending a call, it may happen that it will be forever
waiting for a response that will never arrive. In fact, only a call can wake up
the server after it received a shutdown command in the busy state, but this call
cannot be issued by the client as long as the client does not receive the response
to its previous call that the server was processing.

Based on the considerations derived above from the distinguishing formula,
in order to make the DPM transparent to the client, we first recognize that the
client should implement a timeout mechanism, so that it no longer deadlocks.
This may complicate not only the client but also the server, as they now must be
able to discard old packets due to useless retransmissions. On the other hand,
the timeout mechanism allows the client to cope with a more realistic radio
channel that can lose packets. Second, we recognize that the DPM should not
shut down the server while it is busy, which is achieved by making the server
inform the DPM about its state changes via the busy and idle triggers as shown
in Fig. 3.

As a consequence, in order to consider a more accurate version of the re-
mote procedure call case study, we have to modify the first Æmilia specifi-
cation of Sect. 4.2 as shown in Tables 2, 3, and 4. In the DPM description,
send shutdown refers to a state-modifying activity, while receive busy notice
and receive idle notice refer to information-collecting activities. We have ver-
ified with TwoTowers that this revised version of the Æmilia specification of the
functional model of the remote procedure call case study meets noninterference
when giving the following specification of the action type levels:

HIGH DPM.send_shutdown

LOW C.send_rpc_packet;
C.receive_result_packet;
C.process_result_packet;
C.expire_timeout;
C.ignore_result_packet

This means that the introduction of the DPM in the realistic scenario is trans-
parent from the functional viewpoint, in the sense that it does not alter the
behavior of the system as perceived by the client.

A Methodology Based on Formal Methods 177

Table 2. Æmilia functional model of the case study (part I)

ARCHI TYPE RPC DPM F(void)

ARCHI ELEM TYPES

ELEM TYPE Client Type(void)

BEHAVIOR Requesting Client(void; void) =
choice {

<send rpc packet, >.Waiting Client(),
<receive result packet, >.

<ignore result packet, >.
Requesting Client()

};
Waiting Client(void; void) =
choice {

<receive result packet, >.
Processing Client(),

<expire timeout, >.Resending Client()
};

Processing Client(void; void) =
choice {

<process result packet, >.
Requesting Client(),

<receive result packet, >.
<ignore result packet, >.
Processing Client()

};
Resending Client(void; void) =
choice {

<send rpc packet, >.Waiting Client(),
<receive result packet, >.Processing Client()

}
INPUT INTERACTIONS UNI receive result packet

OUTPUT INTERACTIONS UNI send rpc packet

ELEM TYPE Radio Channel Type(void)

BEHAVIOR Radio Channel(void; void) =
<get packet, >.<propagate packet, >.
choice {

<keep packet, >.
<deliver packet, >.Radio Channel(),

<lose packet, >.Radio Channel()
}

INPUT INTERACTIONS UNI get packet

OUTPUT INTERACTIONS UNI deliver packet

178 A. Acquaviva et al.

Table 3. Æmilia functional model of the case study (part II)

ELEM TYPE Server Type(void)

BEHAVIOR Idle Server(void; void) =
choice {

<receive rpc packet, >.
<notify busy, >.Busy Server(),

<receive shutdown, >.Sleeping Server()
};

Busy Server(void; void) =
choice {

<prepare result packet, >.
Responding Server(),

<receive rpc packet, >.
<ignore rpc packet, >.Busy Server()

};
Responding Server(void; void) =
choice {

<send result packet, >.
<notify idle, >.Idle Server(),

<receive rpc packet, >.
<ignore rpc packet, >.Responding Server()

};
Sleeping Server(void; void) =

<receive rpc packet, >.Awaking Server();

Awaking Server(void; void) =
choice {

<awake, >.Busy Server(),
<receive rpc packet, >.

<ignore rpc packet, >.Awaking Server()
}

INPUT INTERACTIONS UNI receive rpc packet; receive shutdown

OUTPUT INTERACTIONS UNI send result packet; notify busy; notify idle

ELEM TYPE DPM Type(void)

BEHAVIOR Enabled DPM(void; void) =
choice {

<send shutdown, >.Disabled DPM(),
<receive busy notice, >.Disabled DPM()

};
Disabled DPM(void; void) =

<receive idle notice, >.Enabled DPM()

INPUT INTERACTIONS UNI receive busy notice; receive idle notice

OUTPUT INTERACTIONS UNI send shutdown

A Methodology Based on Formal Methods 179

Table 4. Æmilia functional model of the case study (part III)

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES C : Client Type();
RCS : Radio Channel Type();
RSC : Radio Channel Type();
S : Server Type();
DPM : DPM Type()

ARCHI INTERACTIONS void

ARCHI ATTACHMENTS FROM C.send rpc packet
TO RCS.get packet;

FROM RCS.deliver packet
TO S.receive rpc packet;

FROM S.send result packet
TO RSC.get packet;

FROM RSC.deliver packet
TO C.receive result packet;

FROM S.notify busy
TO DPM.receive busy notice;

FROM S.notify idle
TO DPM.receive idle notice;

FROM DPM.send shutdown
TO S.receive shutdown

END

6 Comparing the Markovian Models

In the second phase of the predictive methodology two Markovian models of
the system – one with the DPM disabled and the other one with the DPM
enabled – are built from the two functional models considered in the first phase.
The Æmilia specification of the Markovian model for the remote procedure call
case study with the DPM enabled is shown in Tables 5, 6, and 7. The Æmilia
specification of the Markovian model with the DPM disabled can be as usual
obtained from the previous one by adding what follows after the architectural
topology section:

BEHAV_VARIATIONS

BEHAV_RESTRICTIONS
RESTRICT DPM.send_shutdown

As can be noted, there are three main differences with respect to the Æmilia
specification of the functional model provided in Sect. 5. First, the description of
the architectural type is parameterized with respect to a set of rates (expressed
in 0.1 ms−1) and probabilities concerned with the system activities, which are

180 A. Acquaviva et al.

Table 5. Æmilia Markovian model of the case study (part I)

ARCHI TYPE RPC DPM M(const rate server proc rate := 0.5,
const rate server awaking rate := 0.0333,
const rate packet prop rate := 0.125,
const rate client proc rate := 0.0103,
const rate client timeout rate := 0.05,
const rate dpm shutdown rate := 0.01,
const weight packet loss prob := 0.02)

ARCHI ELEM TYPES

ELEM TYPE Client Type(const rate client proc rate,
const rate client timeout rate)

BEHAVIOR Requesting Client(void; void) =
choice {

<send rpc packet, inf>.Waiting Client(),
<receive result packet, >.

<ignore result packet, inf>.
Requesting Client()

};
Waiting Client(void; void) =
choice {

<receive result packet, >.
Processing Client(),

<expire timeout, exp(client timeout rate)>.
Resending Client(),

<monitor waiting client, exp(1)>.
Waiting Client()

};
Processing Client(void; void) =
choice {

<process result packet, exp(client proc rate)>.
Requesting Client(),

<receive result packet, >.
<ignore result packet, inf>.
Processing Client()

};
Resending Client(void; void) =
choice {

<send rpc packet, inf>.Waiting Client(),
<receive result packet, >.Processing Client()

}
INPUT INTERACTIONS UNI receive result packet

OUTPUT INTERACTIONS UNI send rpc packet

passed as actual parameters to the AEIs in the architectural topology section.
We assume that the average server processing time is 0.2 ms, the average server

A Methodology Based on Formal Methods 181

Table 6. Æmilia Markovian model of the case study (part II)

ELEM TYPE Radio Channel Type(const rate packet prop rate,
const weight packet loss prob)

BEHAVIOR Radio Channel(void; void) =
<get packet, >.

<propagate packet, exp(packet prop rate)>.
choice {

<keep packet, inf(1, 1 - packet loss prob)>.
<deliver packet, inf>.Radio Channel(),

<lose packet, inf(1, packet loss prob)>.
Radio Channel()

}
INPUT INTERACTIONS UNI get packet

OUTPUT INTERACTIONS UNI deliver packet

ELEM TYPE Server Type(const rate server proc rate,
const rate server awaking rate)

BEHAVIOR Idle Server(void; void) =
choice {

<receive rpc packet, >.
<notify busy, inf>.Busy Server(),

<receive shutdown, >.Sleeping Server(),
<monitor idle server, exp(1)>.Idle Server()

};
Busy Server(void; void) =
choice {

<prepare result packet, exp(server proc rate)>.
Responding Server(),

<receive rpc packet, >.
<ignore rpc packet, inf>.Busy Server(),

<monitor busy server, exp(1)>.Busy Server()
};

Responding Server(void; void) =
choice {

<send result packet, inf>.
<notify idle, inf>.Idle Server(),

<receive rpc packet, >.
<ignore rpc packet, inf>.Responding Server(),

<monitor busy server, exp(1)>.
Responding Server()

};
Sleeping Server(void; void) =
choice {

<receive rpc packet, >.Awaking Server(),
<monitor sleeping server, exp(1)>.
Sleeping Server()

};

182 A. Acquaviva et al.

Table 7. Æmilia Markovian model of the case study (part III)

Awaking Server(void; void) =
choice {

<awake, exp(server awaking rate)>.
Busy Server(),

<receive rpc packet, >.
<ignore rpc packet, inf>.Awaking Server(),

<monitor awaking server, exp(1)>.
Awaking Server()

}
INPUT INTERACTIONS UNI receive rpc packet; receive shutdown

OUTPUT INTERACTIONS UNI send result packet; notify busy; notify idle

ELEM TYPE DPM Type(const rate dpm shutdown rate)

BEHAVIOR Enabled DPM(void; void) =
choice {

<send shutdown, exp(dpm shutdown rate)>.
Disabled DPM(),

<receive busy notice, >.Disabled DPM()
};

Disabled DPM(void; void) =
<receive idle notice, >.Enabled DPM()

INPUT INTERACTIONS UNI receive busy notice; receive idle notice

OUTPUT INTERACTIONS UNI send shutdown

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES S : Server Type(server proc rate,
server awaking rate);

RCS : Radio Channel Type(packet prop rate,
packet loss prob);

RSC : Radio Channel Type(packet prop rate,
packet loss prob);

C : Client Type(client proc rate,
client timeout rate);

DPM : DPM Type(dpm shutdown rate)

ARCHI INTERACTIONS void

ARCHI ATTACHMENTS �same as functional model�

END

awaking time is 3 ms, the average packet propagation time is 0.8 ms, the packet
loss probability is 0.02, the average client processing time is 9.7 ms, the average
client timeout is 2 ms, and the average DPM shutdown timeout is 10 ms.

Second, every action can now contain the specification of its duration. This
is given by exp() in the case of an exponentially timed action, while it is
represented by inf(,) in the case of an immediate action. The two parameters

A Methodology Based on Formal Methods 183

of an immediate action are its priority level and its weight, whose default value
is 1. All the other actions are called passive and get a duration only if they are
attached to an exponentially timed or immediate action. Actions that are not
passive cannot be attached to each other.

Third, all the defining equations of the server have been augmented with a
self-looping, exponentially timed action (whose type starts with monitor) that
will be exploited to measure the time spent by the server in each of its states.
A similar action has been added to one of the defining equations of the client,
which will be used to measure the quality of service perceived by the client.

Since the Æmilia specification of the Markovian model with the DPM disabled
is obtained from the one with the DPM enabled by restricting the only state-
modifying activity of the DPM, the immediate actions are certainly used in a
consistent way in both Markovian models. From the fact that the only state-
modifying activity of the DPM is described through an exponentially timed
action, it follows that noninterference is preserved when going from the functional
models to the Markovian models.

In order to assess the impact of the DPM from the performance viewpoint,
we concentrate on the following three measures: the system throughput, the
percentage of time spent by the client waiting for the results, and the energy
that is consumed by the server. Such measures are evaluated for several typical
values of the DPM shutdown rate, in order to get insight in the trend of both
the power consumption and the overall system efficiency.

When using the performance evaluator of TwoTowers, the following addi-
tional specification is needed in which the measures of interest are formalized
via reward structures in a way inspired by [6]:

MEASURE throughput IS
ENABLED(C.process_result_packet) -> TRANS_REWARD(1);

MEASURE waiting_time IS
ENABLED(C.monitor_waiting_client) -> STATE_REWARD(1);

MEASURE energy IS
ENABLED(S.monitor_idle_server) -> STATE_REWARD(2)
ENABLED(S.monitor_busy_server) -> STATE_REWARD(3)
ENABLED(S.monitor_awaking_server) -> STATE_REWARD(2)

The value of each performance measure for any of the two Markovian models
is given by the weighted sum of the state probabilities and transition frequencies
of the continuous-time Markov chain underlying the model, with the weights
being given by the rewards occurring in the definition of the measure. It is
worth recalling that every state is a vector of local states, one for each AEI. To
measure the throughput, intended as the mean number of calls served per unit
of time, we have to give a unitary instantaneous reward to all the transitions
representing the result processing. To measure the waiting time, we have to
single out those states in which the client is waiting for the results, which is
accomplished by giving a unitary cumulative reward to all the states with an

184 A. Acquaviva et al.

outgoing transition that represents the fact that the client is waiting. Finally, to
measure the energy we have to give a suitable cumulative reward to every state,
whose value depends on the local state of the server. We assume that the energy
consumed in the busy state is 50% more than the energy consumed in the idle
and awaking state, while of course no energy is consumed in the sleeping state.

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

0.002

0.004

w
ai

tin
g

tim
e

DPM enabled
DPM disabled

0 5 10 15 20 25
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

Fig. 6. Performance comparison of the Markovian models of the case study

The results of the performance analysis conducted with TwoTowers on the
two Markovian models of the remote procedure call case study are reported in
Fig. 6, for values of the DPM shutdown timeout between 0 and 25 ms. Dot-
dashed lines refer to the system with the DPM disabled, while solid lines refer
to the system with the DPM enabled. Throughput, average waiting time, and
energy per request are plotted as a function of the timeout used by the DPM
to issue shutdown commands. The energy per request is obtained as the ratio of
the energy to the throughput.

As expected, the shorter the DPM timeout, the larger the impact of the
DPM. The limiting situations are represented by a DPM that issues a shutdown
command as soon as the server goes idle (timeout = 0) and by a DPM that
never issues shutdown commands (timeout = ∞). In the first case the impact of
the DPM is maximum, while in the last case the DPM has no effect.

From the figure we derive that the DPM is never counterproductive in terms
of energy, meaning that the additional energy required to wake up the server from
the sleeping state is compensated, on average, by the energy saved while sleeping.
On the other hand, energy savings are always paid in terms of performance

A Methodology Based on Formal Methods 185

penalties – reduced throughput and increased waiting time – so that the DPM
is not transparent in terms of quality of service perceived by the client.

7 Comparing the General Models

In the third phase of the predictive methodology the two Markovian models of
the system have to be made more realistic through a more accurate description of
the activity delays. For the remote procedure call case study this is accomplished
by replacing all the exponentially distributed durations with deterministic du-
rations, except for the packet propagation delay, which is characterized through
a normal distribution.

Since Æmilia does not directly support general distributions, such a distri-
bution replacement requires to switch from a continuous-time description to
a discrete-time one regulated by a clock, in which the event occurrences are
scheduled by sampling the corresponding action durations from the related dis-
tributions. The resulting general models are not shown here due to lack of space,
but can be found at www.sti.uniurb.it/bernardo/twotowers/.

In order to guarantee some form of performance consistency between the
general models and the corresponding Markovian models, we have verified with
the performance evaluator of TwoTowers that each of the two general models, in
which average-preserving exponential distributions have been substituted back
for the general distributions, result in values for the considered performance
measures that are comparable to those of the corresponding Markovian model.
The outcome of the validation process is plotted in Fig. 7. The good agreement
between the values of the considered performance measure for the two types of

0 5 10 15 20 25
shutdown timeout

0.5

1

1.5

2

se
rv

er
 e

ne
rg

y
co

ns
um

pt
io

n

DPM disabled - general (exp)
DPM disabled - Markovian
DPM enabled - general (exp)
DPM enabled - Markovian

Fig. 7. Validation of the general models against the Markovian ones

186 A. Acquaviva et al.

0.01

0.02

0.03

en
er

gy
/r

eq
ue

st

0.002

0.004

w
ai

tin
g

tim
e

DPM enabled
DPM disabled

0 5 10 15 20 25
shutdown timeout

0.006

0.007

0.008

th
ro

ug
hp

ut

Fig. 8. Performance comparison of the general models of the case study

models is apparent. On the other hand, the values cannot be identical because
of the discretization applied when introducing the general distributions.

The general model with the DPM enabled and with the DPM disabled have
been simulated with TwoTowers in order to estimate at a certain confidence
level the same three performance measures as Sect. 6. In the specific case of
Æmilia, the simulation parameters – run number and run length – have to be
provided in an auxiliary specification, together with the reward-like description
of the performance measures to be estimated.

The results of the simulation conducted with TwoTowers on the two general
models of the remote procedure call case study are reported in Fig. 8 together
with the related confidence intervals. First of all, we observe that there is a
sizeable difference with the results for the Markovian models shown in Fig. 6.
This difference motivates the presence of the third phase in the methodology.

The three measures of interest have a bi-modal dependence on the shutdown
timeout. The transition between the two modes happens around 11.3 ms, which
turns out to be the average idle period of the server (this has been computed
during the simulation as well). For timeouts shorter than the average idle period,
the energy grows linearly with the timeout, while the waiting time and the
throughput are constant. For timeouts larger than the average idle period, the
DPM has no effect. In a deterministic system, the transition between the two
modes would be instantaneous. The smooth transition observed in the figure
for timeout values close to the average idle period of the server is due to the
normal probability distribution associated with the packet propagation along
the radio channel.

A Methodology Based on Formal Methods 187

0.01 0.015 0.02 0.025 0.03 0.035 0.04
waiting time

0.002

0.003

0.004

0.005

0.006

en
er

gy
/r

eq
ue

st

general
Markovian

Fig. 9. Tradeoff between energy consumption and waiting time for the case study

From the figure we derive what follows in a realistic scenario. First, the
DPM is counterproductive if the value of the shutdown timeout is close to the
average idle period. In this case, in fact, the server needs to wake up right after
a shutdown. Second, energy savings provided for short timeouts are paid both
in terms of increased waiting time and in terms of reduced throughput. Third,
the DPM is transparent to the client in terms of quality of service only when it
does not provide any energy saving.

The results of the two performance comparisons – analytical and simulative
– are summarized by the two Pareto curves of Fig. 9, which show the energy-
quality tradeoff provided by the DPM when varying its shutdown timeout. The
thin curve refers to the Markovian model with the DPM enabled, while the thick
curve refers to the general model with the DPM enabled. The difference between
the results of the Markovian analysis and of the simulation is remarkable. While
in the Markovian case an optimal tradeoff is achieved, many points of the curve
of the general model are beyond the Pareto curve, since they are overcome by
other points both in terms of energy saving and performance. These suboptimal
points correspond to the DPM timeout values close to the average idle time of
the server, which make the DPM counterproductive in a realistic scenario.

8 Conclusion

In this paper we have presented and exemplified an incremental methodology
to assist the design of mobile computing devices, which can be used to predict
in the early design stages the impact of the introduction of a DPM on the
system functionality and performance. Although the methodology is not tied

188 A. Acquaviva et al.

to any specific notation, it better serves its purpose when supported by formal
description languages and analysis techniques, which can be well exploited at
the beginning of the design process.

Formal methods have already been successfully applied to the optimization of
DPM policies [15, 19]. The focus of this paper, instead, is on the development of a
broader methodology relying on formal methods to predict whether the adoption
of a specific DPM policy is convenient or not, by investigating the functional and
performance transparency of the policy. The predictive methodology can also
serve optimization purposes, because it can be used to tune the DPM operation
parameters in order to achieve a satisfactory energy-quality tradeoff (if any).

We conclude by emphasizing the discovery of the suitability of the noninter-
ference analysis – typically used to detect illegal information flows – for investi-
gating the functional transparency of the DPM.

References

1. A. Acquaviva, A. Aldini, M. Bernardo, A. Bogliolo, E. Bontà, and E. Lattanzi,
“Assessing the Impact of Dynamic Power Management on the Functionality and
the Performance of Battery-Powered Appliances”, in Proc. of the 5th IEEE/IFIP
Int. Conf. on Dependable Systems and Networks (DSN 2004), IEEE-CS Press,
pp. 731-740, Firenze (Italy), 2004.

2. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, “Mod-
elling with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995.

3. L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design Techniques
for System-Level Dynamic Power Management”, in IEEE Trans. on VLSI Sys-
tems 8:299-316, 2000.

4. L. Benini, A. Bogliolo, G.A. Paleologo, and G. De Micheli, “Policy Optimization
for Dynamic Power Management”, in IEEE Trans. on Computer Aided Design of
Integrated Circuits and Systems 18:813-833, 1999.

5. M. Bernardo, “TwoTowers 5.0 User Manual”,
http://www.sti.uniurb.it/bernardo/twotowers/, 2004.

6. M. Bernardo and M. Bravetti, “Performance Measure Sensitive Congruences for
Markovian Process Algebras”, in Theoretical Computer Science 290:117-160, 2003.

7. M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic Process Algebra: From
an Algebraic Formalism to an Architectural Description Language”, in Performance
Evaluation of Complex Systems: Techniques and Tools, LNCS 2459:236-260, 2002.

8. A. Bogliolo, L. Benini, E. Lattanzi, and G. De Micheli, “Specification and Analysis
of Power-Managed Systems”, in Proc. of the IEEE 92:1308-1346, 2004.

9. R. Cavada, A. Cimatti, E. Olivetti, M. Pistore, and M. Roveri, “NuSMV 2.1 User
Manual”, http://nusmv.irst.itc.it/, 2002.

10. E.M. Clarke, O. Grumberg, and D.A. Peled, “Model Checking”, MIT Press, 1999.
11. W.R. Cleaveland and O. Sokolsky, “Equivalence and Preorder Checking for Finite-

State Systems”, in Handbook of Process Algebra, Elsevier, pp. 391-424, 2001.
12. W.R. Cleaveland, “On Automatically Explaining Bisimulation Inequivalence”,

in Proc. of the 2nd Int. Conf. on Computer Aided Verification (CAV 1990),
LNCS 531:364-372, New Brunswick (NJ), 1990.

13. R. Focardi and R. Gorrieri, “A Classification of Security Properties”, in Journal
of Computer Security 3:5-33, 1995.

A Methodology Based on Formal Methods 189

14. J.A. Goguen and J. Meseguer, “Security Policy and Security Models”, in Proc. of
the 3rd IEEE Symp. on Security and Privacy (SSP 1982), IEEE-CS Press, pp. 11-
20, Oakland (CA), 1982.

15. R.K. Gupta, S. Irani, and S.K. Shukla, “Formal Methods for Dynamic Power Man-
agement”, in Proc. of the IEEE/ACM Int. Conf. on Computer Aided Design (IC-
CAD 2003), ACM Press, pp. 874-882, San Jose (CA), 2003.

16. R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971.
17. C.-H. Hwang and A. Wu, “A Predictive System Shutdown Method for Energy Sav-

ing of Event-Driven Computation”, in Proc. of the IEEE/ACM Int. Conf. on Com-
puter Aided Design (ICCAD 1997), ACM Press, pp. 28-32, San Jose (CA), 1997.

18. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.
19. G. Norman, D. Parker, M. Kwiatkowska, S.K. Shukla, and R.K. Gupta, “Formal

Analysis and Validation of Continuous-Time Markov Chain Based System Level
Power Management Strategies”, in Proc. of the 7th IEEE Int. High-Level Design
Validation and Test Workshop (HLDVT 2002), IEEE-CS Press, pp. 45-50, Cannes
(France), 2002.

20. M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive System Shutdown
and Other Architectural Techniques for Energy Efficient Programmable Computa-
tion”, in IEEE Trans. on VLSI Systems 4:42.55, 1996.

21. W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”, Prince-
ton University Press, 1994.

22. P.D. Welch, “The Statistical Analysis of Simulation Results”, in Computer Perfor-
mance Modeling Handbook, Academic Press, pp. 267-329, 1983.

Dynamic Power Management Strategies
Within the IEEE 802.11 Standard�

Andrea Acquaviva, Edoardo Bontà, and Emanuele Lattanzi

Università di Urbino “Carlo Bo”,
Istituto di Scienze e Tecnologie dell’Informazione,
Piazza della Repubblica 13, 61029 Urbino, Italy
{acquaviva, bonta, lattanzi}@sti.uniurb.it

Abstract. Mobile terminals such as cellular phones, smart phones and
PDAs require wireless connection to exchange information with the ex-
ternal world. In this tutorial we focus on wireless packet networks based
on the IEEE 802.11b protocol, commonly used to build local area net-
works of palmtop and notebook computers. Due to limited battery life-
time of mobile terminals, energy consumption of wireless interfaces be-
comes a critical design constraint. Within the IEEE 802.11 standard,
power conservation protocols have been implemented that trade power
for performance. In this tutorial, we present a power-accurate model
of wireless network interface card that allows the power/performance
trade-off to be studied as a function of traffic patterns imposed by the
applications. The model has been validated against measurements on
real hardware devices.

1 Introduction

Wireless networks are a key enabling technology for the development of mobile
and ubiquitous computing. However, several challenges characterize the design
and implementation of an efficient wireless link, ranging from channel unreli-
ability to limited bandwidth (w.r.t. wired networks), and power consumption.
Recently, the latter has gained a primary role because of the limited battery
autonomy of mobile terminals. In fact, a considerable amount of power is spent
in a portable system in the radio frequency (RF) section. This is especially true
for palmtop computers and personal digital assistants (PDA), where there are
no power-hungry mechanical components (such as hard disks).

The institute of electrical and electronic engeneers (IEEE) has standardized
a class of Medium Access Control (MAC) protocols that coordinate the access
of mobile terminals to the radio channel and allow wireless local area networks
(WLANs) to be built. Distinguishing features of protocols in this class are carrier
frequency and bandwidth.

� Co-financed by Regione Marche within the CIPE 36/2002 framework.

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 190–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 191

Currently, the most widespread protocol is IEEE 802.11b[1], mainly because
it matches bandwidth requirements of most popular network services with lim-
ited cost of hardware interfaces. It supports also a power conservation strategy
called Power Save Protocol (PSP) that allows stations to sleep when they are
not transmitting or receiving data. This allows ower spent by network interfaces
to sense the medium during idle periods to be saved. Since exiting from sleep
state imposes a non-negligible delay, packets sent to a station are buffered by
the transmitter while the receiver station is sleeping. Sleeping stations (STAs)
wake-up at synchronized time instants to retrieve backlogged traffic. Sleeping
intervals have a programmable duration (sleep time) that for commercial wire-
less interfaces are on the order of hundreds of milliseconds. During sleep periods,
the card cannot receive packets, but it can wake-up to transmit. Clearly, this
strategy affects system responsiveness. As a consequence, there could be a con-
sistent impact on the quality of delay-sensitive real-time applications such has
video streaming and video conferencing tools.

It is clear from the previous discussion that it is of critical importance the
study of the efficiency of 802.11b power conservation strategy and the assess-
ment of its impact on Quality of Service (QoS). In this tutorial, we describe a
performance/power model of wireless network interface cards that we exploit to
characterize PSP efficiency. We report also results of the validation of this model
against measurements on real hardware devices. We used a client-server appli-
cation as case study, where the wireless network interface on the client receives
data from an application server.

All commercial wireless cards implement PSP protocol. However, only a lim-
ited sleep time duration can be set, depending on the particular implementation
and firmware version. The model we describe in this paper overcomes this limi-
tation allowing to tune sleeping period on all possible values. Validation of the
model against real hardware has been made on those configuration points that
match parameter values available on hardware devices. To stress the validation
process, we also compare simulated and real measurements by varying the server
data rate.

The rest of the paper is organized as follows. In Section 2 we give a detailed
overview of IEEE 802.11b standard with particular emphasis on the power con-
servation protocol. In Section 3 we describe the model of a IEEE 802.11b com-
pliant wireless network interface. In Section 4 we report the results of analisys
and simulations on the model as well as the validation against real hardware
measurements.

2 IEEE 802.11

In this Section we give a detailed overview of IEEE 802.11b protocol. We first de-
scribe its general specifications, than we go in to details describing the power con-
servation strategy. Finally, we resume some of the most important non-standard
solutions proposed to save power in IEEE 802.11b wireless networks.

192 A. Acquaviva, E. Bontà, and E. Lattanzi

2.1 WLAN Architecture

Wireless networks based on IEEE 802.11b protocol can be infrastructured or
ad-hoc. In the first case, there is a central coordination and synchronization
element called access point (AP) which routes all the packets transmitted by
mobile stations in its coverage area and provide bridging functionalities to wired
networks. In the second case, stations directly communicate with each other.
The first type of organization is suitable for buildings and urban areas where
APs can be connected to wired backbones. On the contrary, ad-hoc networks are
suitable for less accessible environments and may be used for environment mon-
itoring and battlefields. IEEE 802.11b networks consist of four major physical
components [9]:

– Distribution System. When several access points are connected to form
a large coverage area, they must communicate with each other to follow
the movements of mobile stations. The distribution system is the logical
component that forwards frames to destination. 802.11 does not specify any
particular technology for the distribution system. In most commercial prod-
ucts, the distribution system is implemented as a combination of a bridging
elements and a distribution system medium, which in almost all practical
cases is the Ethernet.

– Access Points. Frames on an 802.11 network must be converted to another
type of frame for delivery to the rest of the world. Devices called access
points perform the wireless-to-wired bridging function.

– Wireless Medium. The medium carries frames from station to station.
Physical layer defines the transmission technology on the medium. Several
different physical layers are defined. Initially, two radio frequency (RF) phys-
ical layers and one infrared physical layer were standardized, though the RF
layers have proven far more popular.

– Stations. Networks are built to transfer data between stations. Stations are
computing devices with wireless network interfaces. Typically, stations are
battery-operated laptop or handheld computers.

2.2 Types of Networks

The basic building block of an 802.11 network is the basic service set (BSS),
which is simply a group of stations that communicate with each other. Commu-
nications take place within a somewhat fuzzy area, called the basic service area,
defined by the propagation characteristics of the wireless medium [9]. When a
station is in the basic service area, it can communicate with the other members
of the BSS. BSSs come in two flavors, both of which are illustrated in Fig. 1.

Independent Networks. On the left is an independent BSS (IBSS). Stations
in an IBSS communicate directly with each other and thus must be within direct
communication range. The smallest possible 802.11 network is an IBSS with two
stations. Typically, IBSSs are composed of a small number of stations set up for
a specific purpose and for a short period of time. One common use is to create

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 193

Fig. 1. Independent and infrastructure BSSs

a short-lived network to support a single meeting in a conference room. As the
meeting begins, the participants create an IBSS to share data. When the meeting
ends, the IBSS is dissolved. Due to their short duration, small size, and focused
purpose, IBSSs are sometimes referred to as ad hoc BSSs or ad hoc networks.

Infrastructure Networks. On the right side of Fig. 1 is an infrastructure BSS
(never called an IBSS). Infrastructure networks are distinguished by the use of an
access point. Access points are used for all communications in infrastructure net-
works, including communication between mobile nodes in the same service area.
If one mobile station in an infrastructure BSS needs to communicate with a sec-
ond mobile station, the communication must take two hops. First, the originating
mobile station transfers the frame to the access point. Second, the access point
transfers the frame to the destination station. With all communications relayed
through an access point, the basic service area corresponding to an infrastructure
BSS is defined by the points in which transmissions from the access point can be
received. Although the multihop transmission takes more transmission capacity
than a directed frame from the sender to the receiver, it has two major advantages:

– An infrastructure BSS is defined by the distance from the access point. All
mobile stations are required to be within reach of the access point, but no
restriction is placed on the distance between mobile stations themselves. Al-
lowing direct communication between mobile stations would save transmis-
sion capacity but at the cost of increased physical layer complexity because
mobile stations would need to maintain neighbor relationships with all other
mobile stations within the service area.

– Access points in infrastructure networks are in a position to assist with sta-
tions attempting to save power. Access points can note when a station enters
a powersaving mode and buffer frames for it. Battery-operated stations can
turn the wireless transceiver off and power it up only to transmit and retrieve
buffered frames from the access point.

194 A. Acquaviva, E. Bontà, and E. Lattanzi

In an infrastructure network, stations must associate with an access point to
obtain network services. Association is the process by which a mobile station
joins an 802.11 network. Mobile stations always initiate the association process,
and access points may choose to grant or deny access based on the contents of
an association request. Associations are also exclusive on the part of the mobile
station: a mobile station can be associated with only one access point. The 802.11
standard places no limit on the number of mobile stations that an access point
may serve. Implementation considerations may, of course, limit the number of
mobile stations an access point may serve. In practice, however, the relatively
low throughput of wireless networks is far more likely to limit the number of
stations placed on a wireless network.

Extended Service Areas. BSSs can create coverage in small offices and homes,
but they cannot provide network coverage to larger areas. 802.11 allows wire-
less networks of arbitrarily large size to be created by linking BSSs into an
extended service set (ESS). An ESS is created by chaining BSSs together with
a backbone network. 802.11 does not specify a particular backbone technology;
it requires only that the backbone provide a specified set of services. In Fig. 2,
the ESS is the union of the four BSSs (provided that all the access points are
configured to be part of the same ESS). In real-world deployments, the degree
of overlap between the BSSs would probably be much greater than the overlap
in Fig. 2.

Stations within the same ESS may communicate with each other, even though
these stations may be in different basic service areas and may even be moving
between basic service areas. For stations in an ESS to communicate with each
other, the wireless medium must act like a single MAC-level connection. Access
points act as bridges, so direct communication between stations in an ESS re-

Fig. 2. Extended service set

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 195

quires that the backbone network also be a MAC-level connection. Any link-layer
connection will suffice. Several access points in a single area may be connected to
a single hub or switch, or they can use virtual LANs if the link-layer connection
must span a large area. 802.11 supplies link-layer mobility within an ESS but
only if the backbone network is a single link-layer domain, such as a shared Eth-
ernet or a VLAN. This important constraint on mobility is often a major factor
in 802.11 network design. Extended service areas are the highest-level abstrac-
tion supported by 802.11 networks. Access points in an ESS operate in concert
to allow the outside world to use a single MAC address to talk to a station some-
where within the ESS. In Fig. 2, the router uses a single MAC address to deliver
frames to a mobile station; the access point with which that mobile station is
associated delivers the frame. The router remains ignorant of the location of the
mobile station and relies on the access points to deliver the frame.

2.3 802.11 MAC Layer

The key to the 802.11 specification is the MAC. It rides on every physical layer
and controls the transmission of user data into the air. It provides the core
framing operations and the interaction with a wired network backbone. Differ-
ent physical layers may provide different transmission speeds, all of which are
supposed to interoperate. 802.11 does not depart from the previous IEEE 802
standards in any radical way. The standard successfully adapts Ethernet-style
networking to radio links. Like Ethernet, 802.11 uses a carrier sense multiple
access (CSMA) scheme to control access to the transmission medium. How-
ever, collisions waste valuable transmission capacity, so rather than the collision
detection (CSMA/CD) employed by Ethernet, 802.11 uses collision avoidance
(CSMA/CA). Also like Ethernet, 802.11 uses a distributed access scheme with
no centralized controller. Each 802.11 station uses the same method to gain ac-
cess to the medium. The major differences between 802.11 and Ethernet stem
from the differences in the underlying medium.

On a wired Ethernet, it is reasonable to transmit a frame and assume that
the destination receives it correctly. Radio links are different, especially when the
frequencies used are unlicensed ISM (Industrial, Science and Medicine) bands.
Even narrowband transmissions are subject to noise and interference, but un-
licensed devices must assume that interference will exist and work around it.
The designers of 802.11 considered ways to work around the radiation from mi-
crowave ovens and other RF sources. In addition to the noise, multipath fading
may also lead to situations in which frames cannot be transmitted because a node
moves into a dead spot. Unlike many other link layer protocols, 802.11 incorpo-
rates positive acknowledgments. All transmitted frames must be acknowledged,
as shown in Fig. 3. If any part of the transfer fails, the frame is considered lost.

Wireless networks boundaries are represented by the point where each node
may not be able to communicate with every other node in the wireless network,
as in Fig. 4.

In the figure, node 2 can communicate with both nodes 1 and 3, but something
prevents nodes 1 and 3 from communicating directly. From the perspective of

196 A. Acquaviva, E. Bontà, and E. Lattanzi

Fig. 3. Positive acknowledgment of data transmissions

Fig. 4. Nodes 1 and 3 are hidden

node 1, node 3 is a “hidden“ node. If a simple transmission protocol were used, it
could happen that node 1 and node 3 transmit simultaneously, thus causing node
2 unable to receive a correct information. Furthermore, nodes 1 and 3 would not
have any indication of the error because the collision was local to node 2.

Collisions resulting from hidden nodes may be hard to detect in wireless net-
works because wireless transceivers are generally half-duplex; they don’t transmit
and receive at the same time. To prevent collisions, 802.11 allows stations to use
Request to Send (RTS) and Clear to Send (CTS) signals to clear out an area.
Fig. 5 illustrates the procedure.

In Fig. 5, node 1 has a frame to send; it initiates the process by sending an
RTS frame. The RTS frame serves several purposes: in addition to reserving the
radio link for transmission, it silences any stations that hear it. If the target
station receives an RTS, it responds with a CTS. Like the RTS frame, the CTS
frame silences stations in the immediate vicinity. Once the RTS/CTS exchange
is complete, node 1 can transmit its frames without worry of interference from
any hidden nodes. Hidden nodes beyond the range of the sending station are
silenced by the CTS from the receiver. When the RTS/CTS clearing procedure
is used, any frames must be positively acknowledged. The multiframe RTS/CTS

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 197

Fig. 5. RTS/CTS clearing

transmission procedure consumes a fair amount of capacity, especially because of
the additional latency incurred before transmission can commence. As a result,
it is used only in high-capacity environments and environments with significant
contention on transmission. For lower-capacity environments, it is not necessary.
User can set a RTS threshold if the device driver in most commercial cards.
The RTS/CTS exchange is performed for those frames whose size is larger than
the threshold.

2.4 Power Conservation Strategy

The major advantage of wireless networks is that network access does not require
nodes to be in any particular location. To take full advantage of mobility, nothing
can constrain the location of a node, including the availability of electrical power.
Mobility therefore implies that most mobile devices can run on batteries. But
battery power is a scarce resource; batteries can run only so long before they
need to be recharged. Requiring mobile users to return frequently to commercial
power is inconvenient, to say the least. Many wireless applications require long
battery life without sacrificing network connectivity. As with any other network
interface, powering down the transceiver can lead to great power savings in
wireless networks. When the transceiver is off, it is said to be sleeping, dozing,
or in power-saving mode (PS). When the transceiver is on, it is said to be awake,
active, or simply on. Power conservation in 802.11 is achieved by minimizing the
time spent in the latter stage and maximizing the time in the former. However,
802.11 accomplishes this without sacrificing connectivity.

Power Conservation in Infrastructure Networks. Power management can
achieve the greatest savings in infrastructure networks. All traffic for mobile
stations must go through access points, so they are an ideal location to buffer

198 A. Acquaviva, E. Bontà, and E. Lattanzi

traffic. There is no need to work on a distributed buffer system that must be
implemented on every station; the bulk of the work is left to the access point.
By definition, access points are aware of the location of mobile stations, and
a mobile station can communicate its power management state to its access
point. Furthermore, access points must remain active at all times; it is assumed
that they have access to continuous power. Combining these two facts allows
access points to play a key role in power management on infrastructure networks.
Access points have two power management-related tasks. First, because an access
point knows the power management state of every station that has associated
with it, it can determine whether a frame should be delivered to the wireless
network because the station is active or buffered because the station is asleep.
But buffering frames alone does not enable mobile stations to pick up the data
waiting for them. An access point’s second task is to announce periodically which
stations have frames waiting for them. The periodic announcement of buffer
status also helps to contribute to the power savings in infrastructure networks.
Powering up a receiver to listen to the buffer status requires far less power than
periodically transmitting polling frames. Stations only need to power up the
transmitter to transmit polling frames after being informed that there is a reason
to expend the energy. Power management is designed around the needs of the
battery-powered mobile stations. Mobile stations can sleep for extended periods
to avoid using the wireless network interface. Part of the association request is
the listen interval parameter, which is the number of beacon periods for which
the mobile station may choose to sleep. Longer listen intervals require more
buffer space on the access point; therefore, the listen lnterval is one of the key
parameters used in estimating the resources required to support an association.
The listen interval is a contract with the access point. In agreeing to buffer any
frames while the mobile station is sleeping, the access point agrees to wait for
at least the listen interval before discarding frames. If a mobile station fails to
check for waiting frames after each listen interval, such frames may be discarded
without notification.

TIM - Traffic Indication Message. When frames are buffered, a destination
node’s AID (association ID) provides the logical link between the frame and its
destination. The AID indicated to which BSS a node belongs to, and is assigned
by the base station. Each AID is logically connected to frames buffered for
the mobile station that is assigned that AID. Multicast and broadcast frames
are buffered and linked to an AID of zero. To inform stations that frames are
buffered, access points periodically assemble a traffic indication map (TIM) and
transmit it in beacon frames. The TIM is a virtual bitmap composed of 2,008
bits; offsets are used so that the access point needs to transmit only a small
portion of the virtual bitmap. This conserves network capacity when only a few
stations have buffered data. Each bit in the TIM corresponds to a particular
AID; setting the bit indicates that the access point has buffered unicast frames
for the station with the AID corresponding to the bit position. Mobile stations
must wake up and enter the active mode to listen for Beacon frames to receive
the TIM. By examining the TIM, a station can determine if the access point has

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 199

Fig. 6. PS-Poll frame retrieval

buffered traffic on its behalf. To retrieve buffered frames, mobile stations use PS-
Poll (Power Save Poll) Control frames. Each PS-Poll frame is used to retrieve
one buffered frame. That frame must be positively acknowledged before it is
removed from the buffer. Positive acknowledgment is required to keep a second,
retried PS-Poll from acting as an implicit acknowledgment. Fig. 6 illustrates
the process.

If multiple frames are buffered for a mobile station, then the More Data bit
in the Frame Control field is set to 1. Mobile stations can then issue additional
PS-Poll requests to the access point until the More Data bit is set to 0, though
no time constraint is imposed by the standard. After transmitting the PS-Poll,
a mobile station must remain awake until either the polling transaction has
concluded or the bit corresponding to its AID is no longer set in the TIM. The
reason for the first case is obvious: the mobile station has successfully polled the
access point; part of that transaction was a notification that the mobile station
will be returning to a sleeping mode. The second case allows the mobile station
to return to a power conservation mode if the access point discards the buffered
frame. Once all the traffic buffered for a station is delivered or discarded, the
station can resume sleeping.

Stations may switch from a power conservation mode to active mode at any
time. It is common for laptop computers to operate with full power to all pe-
ripherals when connected to AC power and conserve power only when using the
battery. If a mobile station switches to the active mode from a sleeping mode,
frames can be transmitted without waiting for a PS-Poll. PS-Poll frames indi-
cate that a power-saving mobile station has temporarily switched to an active
mode and is ready to receive a buffered frame. By definition, active stations have

200 A. Acquaviva, E. Bontà, and E. Lattanzi

transceivers operating continuously. After a switch to active mode, the access
point can assume that the receiver is operational, even without receiving explicit
notification to that effect.

Access points must retain frames long enough for mobile stations to pick them
up, but buffer memory is a finite resource. 802.11 mandates that access points
use an aging function to determine when buffered frames are old enough to be
discarded. The standard leaves a great deal to the discretion of the developer
because it specifies only one constraint. Mobile stations depend on access points
to buffer traffic for at least the listen interval specified with the association, and
the standard forbids the aging function from discarding frames before the listen
interval has elapsed. Beyond that, however, there is a great deal of latitude for
vendors to develop different buffer management routines.

DTIM - Deliverying TIM. Frames with a group address cannot be deliv-
ered using a polling algorithm because they are, by definition, addressed to a
group. Therefore, 802.11 incorporates a mechanism for buffering and delivering
broadcast and multicast frames. Buffering is identical to the unicast case, except
that frames are buffered whenever any station associated with the access point
is sleeping. Buffered broadcast and multicast frames are saved using AID 0. Ac-
cess points indicate whether any broadcast or multicast frames are buffered by
setting the first bit in the TIM to 0; this bit corresponds to AID 0. Each BSS
has a parameter called the DTIM Period. TIMs are transmitted with every Bea-
con. At a fixed number of Beacon intervals, a special type of TIM, a Delivery
Traffic Indication Map (DTIM), is sent. The TIM element in Beacon frames
contains a counter that counts down to the next DTIM; this counter is zero in
a DTIM frame. Buffered broadcast and multicast traffic is transmitted after a
DTIM Beacon. Multiple buffered frames are transmitted in sequence; the More
Data bit in the Frame Control field indicates that more frames must be trans-
mitted. Normal channel acquisition rules apply to the transmission of buffered
frames. The access point may choose to defer the processing of incoming PS-Poll
frames until the frames in the broadcast and multicast transmission buffers have
been transmitted.

To receive broadcast and multicast frames, a mobile station must be awake
for DTIM transmissions. Nothing in the specification, however, keeps power-
saving stations in infrastructure networks from waking up to listen to DTIM
frames. Some products that implement power-saving modes will attempt to align
their awakenings with DTIM transmissions. If the system administrator deter-
mines that battery life is more important than receiving broadcast and multicast
frames, a station can be configured to sleep for its listen period without regard
to DTIM transmissions. Some documentation may refer to this as extremely low
power, ultra power-saving mode, deep sleep, or something similar. Several prod-
ucts allow configuration of the DTIM interval. Lengthening the DTIM interval
allows mobile stations to sleep for longer periods and maximizes battery life at
the expense of timely delivery. Shorter DTIM intervals emphasize quick deliv-
ery at the expense of more frequent power-up and power-down cycles. A longer
DTIM can be used when battery life is critical.

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 201

Power Conservation in Ad-Hoc Networks. Power management in an IBSS
is not as efficient as power management in an infrastructure network. In an IBSS,
far more of the burden is placed on the sender to ensure that the receiver is active.
Receivers must also be more available and cannot sleep for the same lengths of
time as in infrastructure networks. As in infrastructure networks, power manage-
ment in independent networks is based on traffic indication messages. Indepen-
dent networks must use a distributed system because there is no logical central
coordinator. Stations in an independent network use announcement traffic indi-
cation messages (ATIMs), which are sometimes called ad hoc traffic indication
messages, to preempt other stations from sleeping. All stations in an IBSS listen
to ATIM frames during specified periods after Beacon transmissions. If a station
has buffered data for another station, it can send an ATIM frame as notification.
In effect, the ATIM frame is a message to keep the transceiver on because there
are pending data. Stations that do not receive ATIM frames are free to conserve
power. In Fig. 7 on the left, station A has buffered a frame for station C, so it
sends a unicast ATIM frame to station C during the ATIM transmission window,
which has the effect of notifying station C that it should not enter power-saving
mode. Station B, however, is free to power down its wireless interface. Fig. 7 on
the right shows a multicast ATIM frame in use. This frame can be used to notify
an entire group of stations to avoid entering low-power modes.

Fig. 7. ATIM usage

A time window called the ATIM window follows the Beacon transmission.
This window is the period during which nodes must remain active. No stations
are permitted to power down their wireless interfaces during the ATIM window.
It starts at the time when the beacon is expected and ends after a period specified
when the IBSS is created. If the beacon is delayed due to a traffic overrun, the
usable portion of the ATIM window shrinks by the same amount. The ATIM
window is the only IBSS-specific parameter required to create an IBSS. Setting
it to 0 avoids using any power management. Fig. 8 illustrates the ATIM window

202 A. Acquaviva, E. Bontà, and E. Lattanzi

Fig. 8. ATIM window

and its relation to the beacon interval. In the figure, the fourth beacon is delayed
due to a busy medium. The ATIM window remains constant, starting at the
target beacon interval and extending the length of the ATIM window. Of course,
the usable period of the ATIM window shrinks by the length of the delay in
beacon transmission.

To monitor the entire ATIM window, stations must wake up before the target
beacon transmission. Four situations are possible: the station has transmitted an
ATIM, received an ATIM, neither transmitted nor received, or both transmitted
and received. Stations that transmit ATIM frames must not sleep. Transmitting
an ATIM indicates an intent to transmit buffered traffic and thus an intent
to stay active. Stations to which ATIM frames are addressed must also avoid
sleeping so they can receive any frames transmitted by the ATIM’s sender. If
a station both transmits and receives ATIM frames, it stays up. A station is
permitted to sleep only if it neither transmits nor receives an ATIM. When a
station stays up due to ATIM traffic, it remains active until the conclusion of
the next ATIM window.

Only certain control and management frames can be transmitted during the
ATIM window: Beacons, RTS, CTS, ACK, and, of course, ATIM frames. ATIM
frames may be transmitted only during the ATIM window because stations may
be sleeping outside the ATIM window. Sending an ATIM frame is useless if
other stations in the IBSS are sleeping. In the same vein, acknowledgments are
required for unicast ATIM frames because that is the only guarantee that the
ATIM was received and that the frame destination will be active for the re-
mainder of the beacon interval. Acknowledgments are not required for multicast
ATIM frames because multicast frames cannot be efficiently acknowledged by a
large group of stations. If all potential recipients of an ATIM frame were required
to acknowledge it, the mass of acknowledgments could potentially interrupt net-
work service.

Buffered broadcast and multicast frames are transmitted after the conclusion
of the ATIM window, subject to DCF constraints. Following the transmission
of broadcast and multicast frames, a station may attempt to transmit unicast
frames that were announced with an ATIM and for which an acknowledgment
was received. Following all transmissions announced with an ATIM, stations
may transmit unbuffered frames to other stations that are known to be active.
Stations are active if they have transmitted the Beacon, an ATIM, or are not

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 203

capable of sleeping. If contention is severe enough to prevent a station from send-
ing the buffered frame it announced with an ATIM, the station must reannounce
the transmission with an ATIM at the start of the next ATIM window.

Stations are responsible for maintaining sufficient memory to buffer frames,
but the buffer size must be traded off against the use of that memory for other
purposes. The standard allows a station in an independent network to discard
frames that have been buffered for an“excessive“ amount of time, but the algo-
rithm used to make that determination is beyond the scope of the standard. The
only requirement placed on any buffer management function is that it retains
frames for at least one beacon period.

Alternative Approaches to Power Conservation. Different techniques have
been proposed to reduce wireless network card (WNIC) power consumption, in-
cluding transmission power control [16] and MAC-level power management (PM)
[13, 18], that can be activated by the card driver when power is critical.

It has been shown [7] that an effective way to further reduce energy consump-
tion is to create opportunities for card shutdown by network traffic reshaping at
a higher level than MAC. The basic rationale of this approach is to create long
idle periods for the NIC, so that the high shut-down transition cost (in terms of
latency and energy) can be fully amortized and power can be saved during long
shut-down times.

In many WLANs, such as home networks, a few servers connect multiple
WLAN clients to a wired network via access points (APs). In a multiclient
environment, traffic reshaping becomes a scheduling problem. While clients run
on power constrained devices, servers are typically not as power constrained.
In addition, servers can have access to the information about both wired and
wireless network conditions. For these reasons, servers are the best candidates
for efficiently scheduling data transmission to clients.

Traditionally, scheduling for multimedia traffic has been studied from two
main perspectives. In the context of multimedia data delivery across large net-
worktopologies, several QoS sensitive schemes have been proposed.These schemes
are designed to work in network elements (switches and routers) responsible to
allocate a share of the link bandwidth to multimedia streams. They are basi-
cally aimed at overcoming limitations of fair queuing schemes such as Weighted
Fair Queuing (WFQ) and Virtual Clock (VC) in providing QoS guarantees to
soft real-time applications. In this context, the Dual Queue discipline has been
proposed that tries to maximize the number of customers receiving a good ser-
vice in case of congestion [10]. Real-time traffic scheduling schemes suitable to
be used in QoS oriented network architectures, such as IntServ, have been also
proposed [17].

When multimedia data must be delivered across a local area network, schedul-
ing strategies can be implemented at the traffic source level. Several schemes
have been proposed in this context, mostly for video-on-demand (VOD) sys-
tems. These schedulers have been traditionally targeted to minimize waiting time
of clients. To ensure service robustness with respect to packet delivery latency
variations and time-varying re-transmission rates, the streaming video clients

204 A. Acquaviva, E. Bontà, and E. Lattanzi

and the server decouple frame transmission and playback through client frame
buffers, which are controlled by the server via packet transmission scheduling.
A traditional scheduling policy is join-the-shortest-queue (JSQ) (i.e., earliest-
deadline first), which guarantees optimal results in terms of buffer emptiness
avoidance [14].

More recent work in this area leads to the development of schedulers aimed
at matching real-time constraints for scalable VOD systems [22] and QoS re-
quirements for simultaneous video transmission [21].

Recently, the problem of traffic scheduling for multimedia applications has
been addressed using the client-side communication energy as objective function
for optimization under real-time constraints [3]. Authors propose energy-aware
scheduling and buffer management policies exploiting the WNIC radio-off state
to aggressively reduce power. Two strategies have been presented: open-loop and
closed-loop. The open-loop strategy is completely controlled by the server that
exploits the knowledge of the consumption rate of all clients in order to provide
bursts of new frames followed by timed shut-down command that turns off the
WNIC of the client for a given amount of time. The closed-loop strategy is based
on a low-water-mark notification sent by each client to the server whenever the
number of packets in the local application buffer falls below a given threshold.
In both cases, the best energy efficiency is provided by a join-the-longest-queue
(JLQ) scheduling policy, since it maximizes the burstiness of the traffic directed
to each client.

Another alternative strategy to perform power control in wireless network
comes from the observation that PSP is not effective in some traffic conditions.
First, the energy efficiency of the 802.11b PM decreases and receiver wait times
increase with more mobile hosts, since multiple concurrent attempts at synchro-
nization with the beacon cause media access contention. Second, the response
time of the wireless link with 802.11b PM grows because of the delay imposed by
sleep periods [20]. These two issues can be resolved by careful scheduling of com-
munication between the server and the client WLAN. Lastly, in a typical wireless
network, broadcast traffic can significantly reduce the chances to enter the doze
mode. Fig. 9 shows the power consumption of a WLAN card with 802.11b PM

a) Light traffic b) Heavy traffic

Fig. 9. 802.11 PM under different broadcast traffic conditions

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 205

enabled under light and heavy network broadcast traffic conditions. Clearly, as
the amount of broadcast traffic increases, the WLAN spends a large amount of
energy listening to it, even if no other application is running on the device. As
a result, very little or no energy savings are obtained. One way to solve this
problem is to turn off the card. It is important to schedule data transmission
carefully, since the overhead of waking up the WLAN from the off state is large.

Many current WLANs are organized in a client-server fashion. Multiple
WLAN clients connect to wired servers via APs. Servers are great candidates
for efficient scheduling of data transmission to clients as they are not power
constrained, and know both wired and wireless network conditions.

To overcome these limitations, a server-controlled power management strat-
egy has been presented [5]. Authors propose a technique that exploits server
knowledge of the workload, traffic conditions and feedback information from the
client in order to minimize WLAN power consumption. The methodology can
be employed for a wide variety of applications, ranging from video and audio
streaming, to web browsing and e-mail. Two new entities are defined: a server
power manager (server PM) and a client power manager (client PM). Server PM
uses the information obtained from the client and the network to control the
parameters of 802.11b PM and to perform energy efficient traffic reshaping so
that WLAN can be turned off. Client PM communicates through a dedicated
low-bandwidth link with the server PM and implements power controls by in-
terfacing with device drivers. It also provides a set of APIs that client programs
can use to provide extra information to the server.

In order to illustrate the effectiveness of the proposed approach, authors used
a streaming video application as a testbed. In this case study, server knowledge
of stream characteristics is exploited. Power savings obtained are of around 67%
with respect to leaving the card always on, and of around 50% relative to us-
ing PSP.

3 Modeling the WNIC

In this section we describe a model that will be used to study the energy/QoS
trade-off of a WNIC. We employed separate state diagrams for the operating
modes of a WNIC implementing the IEEE 802.11b protocol. The state diagrams
are based both on the protocol specification and on the observation of experimen-
tal current profiles. Focusing only on the reception of UDP traffic, we describe
two main operating modes: always on (ON) and power-save protocol (PSP). The
two operating modes can be viewed as macro-states of a top-level state diagram
where state transitions are triggered by user commands.

We used this model within an functional verification and performance evalua-
tion tool [7], that allows to study energy/QoS trade-off of the WNIC. Exploiting
the capabilities of such a tool we can also study the properties of the wireless
card that cannot be studied using real hardware and common simulation en-
vironments, such as the well known Network Simulator (NS) [15], that do not
provide a detailed model of the wireless interface. Compared to NS, our mod-

206 A. Acquaviva, E. Bontà, and E. Lattanzi

Ack
eor

eot

eor

Wait

Receive

Receive

a−packet

n−a−packet w/o−ack

w−ack

Wakeup beacon
Wait

Poll

eow beacon1

Sleep

eot

timer

beacon
Receive

eor

beacon0

eor

Receive

eot
Receiveeor

eor

packet
last

Ack

eot eop
Process

eorn−a−packet

Id
le

B
us

y Waitw−ack

w/o−ack

a) ON mode b) OFF mode

Fig. 10. State diagram of the WNIC working either in ON mode (left) or in PSP mode

(right)

eling and simulation environment has a completely different target. First, we
model in details power consumption of the WNIC, while NS has much more
approssimate power models. Second, we are not targeting a network simulation.
In fact, our model does not implement collision management algorithms nor a
propagation model. However, the latter can be easily added without changing
the model structure.

3.1 ON Mode

The state diagram of the ON mode is shown in Fig. 10. The card waits for in-
coming packets that trigger transitions from wait to receive. Depending on the
nature and on the correctness of the packet, the card may or may not send a
MAC-level acknowledge to the base station. In particular, a positive acknowl-
edgement is required whenever a unicast packet is properly received, while no
negative acknowledgement is sent for corrupted packets, and no acknowledge
is required for multi-cast or broad-cast packets. We call a-packet any packet
that requires a positive acknowledge, n-a-packet any packet that will not be
acknowledged.

Although the power state of the card during reception is independent of the
nature of the received packet, in our state diagram we use two different receive
states: receive w ack, that leads to the Ack state, and receive w/o ack, that
leads back to the Wait state. State duplication is used only to represent the
dependence of the acknowledge on the nature of the received packet.

3.2 PSP Mode

According to the 802.11b MAC-level protocol, the AP can perform traffic reshap-
ing by buffering incoming packets to allow the WNIC to enter a low-power state.
If the MAC-level power management is enabled, the WNIC goes to sleep for a
fixed period of time as soon as no traffic is detected. While the NIC is sleeping,
incoming packets are buffered by the AP. After expiration of the sleeping period,

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 207

0 500 1000
Time [ms]

0

0.05

0.1

C
ur

re
nt

 [
A

]

Busy

BeaconIdle

515 520 525
Time [ms]

0.05

0.06

0.07

0.08

0.09

C
ur

re
nt

 [
A

]

Poll

Wait

Receive

Ack

Process

Multi-cast packet

a) Current in PSP Mode b) Current details

Fig. 11. Current waveforms of a Compaq WNIC receiving UDP traffic in PSP mode

the card wakes up and listens to the beacons periodically sent by the AP. Bea-
cons contain a TIM that provides information about buffered packets, and are
used to re-synchronize the WNIC to the AP. If there are buffered packets to be
received by the client, the WNIC replies to the beacon by sending polling frames
to get the back-log from the AP packet by packet. A positive acknowledgement
is sent for each properly received uni-cast packet.

The state diagram that represents the behavior described above is shown
in Fig. 10. For readability, states are clustered into two subsets labeled Idle
and Busy. The Idle part of the graph describes the behavior of the card when
no traffic is received. The card stays in a low-power sleep state until a given
timeout expires. Then it wakes up and waits for the beacon. We call beacon1
(beacon0) a beacon if its TIM indicates that there is (there is no) buffered traffic
for the card. If a beacon0 is received, the card goes back to sleep as soon as the
beacon has been completely received, otherwise it stays awake and enters the
Busy sub-graph to get the buffered backlog from the base station.

To get the buffered packets the card enters a 5-state loop that entails: sending
a polling frame (Poll), waiting for a packet (Wait), receiving a packet (Receive
w ack), sending a positive acknowledgement (Ack) and preparing a new polling
frame (Process). Each packet contains a more bit telling the card whether there
are additional buffered frames (more=1) or not (more=0). The card exits the
loop as soon as the last packet (i.e., a packet with more=0) is received. Notice
that, when in the wait state, the card is also sensitive to broad-cast and multi-cast
packets that do not require any acknowledgement. We use the same modeling
strategy employed for the ON-mode to model the reaction of the card to packets
that do not require a positive acknowledgement.

3.3 and TwoTowers

The previous model has been described using Æmilia, an architectural descrip-
tion language. Æmilia is the input language of TwoTowers [6], a software tool
for the functional verification, security analysis, and performance evaluation of
computer, communication and software systems. The reason for resorting to the
Æmilia/TwoTowers technology is that we wish to apply the methodology of [2],

Æmilia

208 A. Acquaviva, E. Bontà, and E. Lattanzi

which is based on such technology, to study the energy/QoS trade-off of the
WNIC. The Æmilia models can be found at http : //www.sti.uniurb.it/
bernardo/twotowers/.

4 Results

In this section we report results obtained by analyzing and simulating the WNIC
model presented in the previous section. In order to assess performance and
energy efficiency of a wireless link through our model, we inserted the model
in a larger system model where an application server sends UDP packets to a
wireless client. The server is connected through a wired link to an access point
to which the card is associated. In our assessment, we tune service time (i.e.
time interval among packets sent to the client) and card sleeping period (i.e.
time interval among card wake-up events). To simulate channel unreliability, we
considered also a probability of receiving corrupted packets at the client of 0.2%.
It must be recalled that, referring to 802.11 standard, when a corrupted packet
is received by the client, a retransmission is performed by the server after a
timeout set to 10ms.

The modelling and simulation methodology follows the same approach ex-
plained in [2]. We obtained three classes of results, one by means of Markovian
analysis and the others through simulations.

Results are organized in four parts: i) Markovian analysis, ii) simulation with
exponential rates; iii) simulation with deterministic rates; iv) model validation.
For each of the first three parts, we show two kinds of results: a) a Pareto curve
representing optimal reliability/energy trade-off (where reliability is intended as
packet loss probability); b) a packet loss probability as a function of card sleep
time (i.e. aggressiveness of power management policy). Packets are lost at the
access point buffer.

In the last part we show results obtained by comparing deterministic simu-
lation energy consumption with measures obtained on the real hardware.

4.1 Markovian Model

In Fig. 12 we show Pareto optimal configurations. For a given packet loss proba-
bility, the curve allows to find card sleep times that provide minimum energy per
packet. We reported results for different server service times. It can be observed
that, for a given packet loss probability, energy per packet is lower if service
time is lower. This can be explained because the additional power cost spent
by the card in waiting state when the server service time is large. It can be
also observed that this cost is higher when the card sleep time increases. This
result is a consequence of the power spent by the card while in sleep state, which
is not negligible and whose per-packet contribution on the energy consumption
increases as sleeping time increases.

In Fig. 13 we reported the packet loss probability as a function of card sleep
time. It can be observed that, as expected, for a given server service time, packet

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 209

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
packet loss probability

0.2

0.3

0.4

0.5

0.6

0.7

0.8

en
er

gy
/p

ac
ke

t
server service time 15ms
server service time 30ms
server service time 60ms

Fig. 12. Pareto curve for the Markovian model

0 100 200 300 400 500 600 700 800 900 1000
card sleep time

0

0.2

0.4

0.6

0.8

1

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

server service time 15ms
server service time 30ms
server service time 60ms

Fig. 13. Packet loss for the Markovian model

loss probability increases as a function of sleep time because of the AP buffer
saturation. Clearly, the AP buffer saturates earlier for lower server service times
(higher server rate). This explains the relative positions of the three curves shown
in the figure. In our case study AP buffer was set to 10 packets.

210 A. Acquaviva, E. Bontà, and E. Lattanzi

0 0.2 0.4 0.6 0.8 1
packet loss probability

0

0.2

0.4

0.6

0.8

1

1.2
en

er
gy

/p
ac

ke
t

server service time 60ms
server service time 30ms
server service time 15ms

Fig. 14. Pareto curve for the exponential model

4.2 Exponential and Deterministic Models

In Figure 14 results of the same experiment described in previous part are re-
ported. However, in this case we simulated our system using first exponential
rates (exponential model) and then deterministic rates (deterministic model).
The model shows the same behavior as the markovian analysis. In fact, in can

0 100 200 300 400 500 600 700 800 900 1000
card sleep time

0

0.2

0.4

0.6

0.8

1

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

server service time 15ms
server service time 30ms
server service time 60ms

Fig. 15. Packet loss for the exponential model

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 211

0 0.2 0.4 0.6 0.8 1
packet loss probability

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

en
er

gy
/p

ac
ke

t
server service time 60ms
server service time 30ms
server service time 15ms

Fig. 16. Pareto curve for the deterministic model

0 100 200 300 400 500 600 700 800 900 1000
card sleep time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

server service time 15ms
server service time 30ms
server service time 60ms

Fig. 17. Packet loss for the deterministic model

be observed that both pareto and packet loss probability curves (Fig. 12 and 13,
respectively) show the same shape of corresponding Markovian curves, the only
difference being an offset in absolute values. Results are averaged on 30 runs.
Variances as vertical lines across simulated points.

The third part of results regards simulations with deterministic rates. The
only event which is not deterministic in this simulation is the probability of
packet corruption at the client.

212 A. Acquaviva, E. Bontà, and E. Lattanzi

In Fig. 16 and 17 Pareto and packet loss curves are reported. As for the
previous case, the model behaviour reflects the Markovian case.

4.3 Model Validation

In this last part, we show the results of experiments carried out to validate
our model. To perform our experiments we used a Athlon 4 Mobile 1.2 GHz
notebook running Linux kernel 2.4.21. The WNIC installed on the laptop was
a COMPAQ WL110 [11], while the access point was a CISCO 350 Series base
station [8]. The power consumption of the WNIC was measured using a Sycard
CardBus Ex-tender [19] that allowed us to monitor the time behavior of the
supply current drawn by the card. The current waveforms were then digitized
using a National Instruments DAQ Board PCI 6024E connected to a PC running
Labview 6.1.

We compared simulation results with measurements performed on the real
hardware. In our experiments, we fixed card sleep time to 100ms (Fig. 18) and
200ms (Fig. 19) because they are card sleep time intervals allowed by commercial
cards we used. The duration of the experiments is 10 seconds. In both cases, we
performed measurements and simulations by computing energy consumption as
a function of server service time. The overall behaviour shows that total energy
consumption decreases when service time increases, because the card receives
less packets (the service rate decreases and the total duration of the benchmark
is constant).

The more important result evidenced by these plots is that there is a negligible
difference between simulation and real measurements, stating the accuracy of the
card model.

sleep 100ms

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

server service time

to
ta

l
e

n
e

rg
y

 (
m

J
)

Real

Simulated

Fig. 18. Comparison among simulations and hardware measurements: sleep time 100ms

Dynamic Power Management Strategies Within the IEEE 802.11 Standard 213

sleep 200ms

0

100

200

300

400

500

600

700

0 20 40 60 80 100

server service time

to
ta

l
e

n
e

rg
y

 (
m

J
) Real

Simulated

Fig. 19. Comparison among simulations and hardware measurements: sleep time 200ms

5 Conclusion

In this paper we presented a tutorial on standard power management in wireless
IEEE 802.11b networks. We described in details the power save protocol (PSP)
standard implemented by all commercial cards. We summarized also alternative
approaches to power management proposed in the literature. Then we introduced
a power-accurate model of a wireless network card targeted to the analitycal
study and simulations of power/performance trade-off in a wireless link. We
validated our model against power measurements carried out on real hardware
commercial devices.

References

1. LAN/MAN Standards Committee of the IEEE Computer Society: Part 11: Wire-
less LAN MAC and PHY Specifications: Higher-Speed Physical Layer Extension
in the 2.4 GHz Band. IEEE, 1999.

2. A. Acquaviva, A. Aldini, M. Bernardo, A. Bogliolo, E. Bontá, E. Lattanzi, “A
Methodology Based on Formal Methods for Predicting the Impact of Dynamic
Power Management”, In Formal Methods for Mobile Computing, LNCS 3465, 2005.

3. A. Acquaviva, E. Lattanzi, A. Bogliolo, Designa and Simulation of Power-Aware
Scheduling Strategies of Streaming Data in Wireless LANs, In Proc. of ACM
MSWIM, October 2004.

4. A. Acquaviva, E. Lattanzi, A. Bogliolo, L. Benini, A Simulation Model for Stream-
ing Applications over a Power-Manageable Wireless Link, In Proc. of European
Simulation and Modeling Conference, October 2003.

5. A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy. Remote power control of
wireless network interfaces. In Proc. of Power and Timing Modeling, Optimization
and Simulation, September 2003.

214 A. Acquaviva, E. Bontà, and E. Lattanzi

6. M. Bernardo, TwoTowers 5.0 User Manual, http://www.sti.uniurb.it/bernardo/
twotowers/, 2004.

7. D. Bertozzi, A. Raghunathan, L. Benini, and S. Ravi. Transport protocol optimiza-
tion for energy efficient wireless embedded systems. In Proc. of Design, Automation
and Test Conference, March 2003.

8. Cisco Systems, Cisco Aironet 350 Series Access Points, http :
//www.cisco.com/univercd/cc/td/doc/product/wireless/airo350/accsspts/
index.htm, 2003.

9. M. S. Gast, ”‘802.11 Wireless Networks, The Definitive Guide.”’, OŔeally.
10. D. Hayes, M. Rumsewicz, and L. Andrew. Quality of service driven packet schedul-

ing disciplines for real-time applications: Looking beyond fairness. In Proc. of
Annual Joint Conference of the IEEE Computer and Communications Societies,
March 1999.

11. Hewlett Packard, WL110 Client Card Manual, http :
//h20015.www2.hp.com/content/common/manuals/bpe60027/bpe60027.pdf, 2004.

12. C. Jones, K. Sivalingam, P. Agrawal, J. Chen, “A Survey of Energy Efficient Net-
work Protocols for Wireless Networks”, Proc. of DATE, March 1999.

13. R. Krashinsky, H. Balakrishnan, “Minimizing Energy for Wireless Web Access with
Bounded Slowdown”, Proc. of MOBICOM, October 2002.

14. X. Liu, Y. Xiang, and T. J. Li. Counter based routing policies. In Proc. of High
Performance Computing Conference, pages 389–393, December 1999.

15. Network Simulator, http : //www.isi.edu/nsnam/ns/
16. V. Raghunathan, S. Ganeriwal, C. Schurgers, M. Srivastava, “E2WFQ: An Energy

Efficient Fair Scheduling Policy for Wireless Systems”, Proc. of ISLPED, August
2002.

17. H. Shi and H. Sethu. Scheduling real-time traffic under controlled load service in an
integrated service internet. In Proc. of Workshop on High Performance Switching
and Routing, May 2001.

18. K. Sivalingam, J. Chen, P. Agrawal, M. Srivastava, “Design and Analysis of low-
power access protocols for wireless and mobile ATM networks”, Wireless Networks,
no.6, 2000.

19. Sycard Technology, PCCextend 140 CardBus Extender User’s Manual, http :
//www.sycard.com/docs/cextman.pdf, 1996.

20. E. Takahashi, “Application Aware Scheduling for Power Management on IEEE
802.11” Proc. of Intl. Performance, Computers, and Communications Conf.,
February 2000.

21. H. Wan and X. Lin. Multiple priorities qos scheduling for simultaneous videos
transmissions. In Proc. of International Symposium on Multimedia Software En-
gineering, December 2000.

22. M. Y. Wu, S. Ma, and W. Shu. Scheduled video delivery for scalable on-demand
service. In in Proc. of the 12th international workshop on Network and operating
systems support for digital audio and video, May 2002.

Network Swapping�

Emanuele Lattanzi, Andrea Acquaviva, and Alessandro Bogliolo

Università di Urbino “Carlo Bo”,
Istituto di Scienze e Tecnologie dell’Informazione,
Piazza della Repubblica 13, 61029 Urbino, Italy

{lattanzi, acquaviva, bogliolo}@sti.uniurb.it

Abstract. Wireless mobile terminals have limited storage memory due
to weight, size and power constraints. Potentially unlimited virtual mem-
ory could be found on remote servers made accessible through a wireless
link, but power hungry wireless network interface cards (WNIC) may re-
duce the battery lifetime if not efficiently exploited, actually limiting the
practical interest of network virtual memory (NVM). On the other hand,
when network memory is used for swapping, service performance can be
an issue. In this tutorial we discuss the feasibility of network swapping
for wireless mobile terminals. First, we perform extensive experiments to
compare performance and energy of network swapping with those of local
swapping on microdrives and flash memories. Our results show that re-
mote swap devices made accessible through a power-manageable WNIC
can be even more efficient than local microdrives. Second, we address
the issue of mobility management by presenting an infrastructure pro-
viding efficient remote memory access to mobile terminals. We report
experimental results obtained on a working prototype of the proposed
infrastructure.

1 Introduction

Virtual memory mapped on mass storage devices can be viewed as an unlimited
resource to be used to extend the main memory of desktop and laptop comput-
ers. However, in wireless mobile devices like personal digital assistants (PDAs)
and cellular phones, storage memory is limited or absent due to weight, size and
power constraints, thus limiting the application of virtual memory. On the other
hand, if wireless connectivity is available, unlimited swapping space could be
found on remote devices made available by a server and managed by the operat-
ing system. Remote memory service is implemented by means of a client-server
mechanism similar to that supporting file sharing, where the server allocates
a memory region to be used as a swapping space for a remote client. However,
swapping over a power hungry wireless network interface card (WNIC) may limit
the battery lifetime and application performance if not efficiently exploited.

� Co-financed by Regione Marche within the CIPE 36/2002 framework.

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 215–233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 E. Lattanzi, A. Acquaviva, and A. Bogliolo

The implementation of NVM services for mobile terminals (MTs), imposes
new challenges related to: i) the performance and energy efficiency of the WNIC,
ii) the performance of the network and iii) the mobility of the terminal.

Network swapping has been object of research in the past decade because
of its application in wired networked clusters of computers. In this context,
remote swapping has been found to be more efficient than local swapping [24, 17]
when high-bandwidth network links are available. In fact, accessing the physical
memory of a remote server can be more efficient than accessing a local disk.
These results are not directly applicable to wireless palmtop PCs, because of
bandwidth limitations and energy constraints.

In general, however, the bandwidth provided by the network can be a critical
bottleneck requiring location-aware proximity services.

First of all, in this tutorial we report some results of extensive experiments
conducted to evaluate the performance and power efficiency of different local
and remote swap devices for wireless PDAs (namely, a compact flash (CF), a
micro drive (HD) and two different WNICs). Experimental results show that
WNICs are less efficient than local devices both in terms of energy and time per
page. However, the DPM support provided by WNICs is much more efficient
than that of local micro drives, making network swapping less expensive than
local swapping for real-world applications with non-uniform page requests.

In a second time we address the issue of mobility management by presenting
a wireless NVM infrastructure based on a location-aware caching strategy that
keeps recently-used virtual memory pages local to the base station. The infras-
tructure grants wireless connectivity to the MT and improves service perfor-
mance. Mobility management is based on a write-back mechanism that supports
service migration during handoff. Experimental results obtained on a working
prototype demonstrate the feasibility of the proposed approach.

The rest of the tutorial is organized as follow. In Section 2 we briefly intro-
duce the remote storage space concept. In section 3 we describe the key features
of both local and remote storage devices that can be used for swapping, and
we briefly describe the software support for remote swapping. In section 3.3 we
report wireless NVM infrastructure issues. In Section 4 we describe the bench-
marks and the experimental setup used to characterize each swap device in terms
of power and performance and to test NVM infrastructure. In Section 5 we re-
port devices characterization results in terms of power and performance. Finally
in section 6 we propose our NVM infrastructure implementation and in section 7
we draw conclusions.

2 Remote Storage Space

The concept of remote storage has been exploited by deeply networked systems
for mainly two reasons. First, remote memories or magnetic disks are used to
store application and data by systems with limited or absent local mass storage
space. Even if the memory is not a constraint, remote storage spaces are used as
repository of data shared among different users, as in the case of file servers. Disk-

Network Swapping 217

less workstations and mobile terminals are both computer systems characterized
by limited or absent disk capacity. Access to remote data can be controlled by
a network file systems. However, mobile networks require suitable protocols to
handle disconnected and weakly connected operations. To this purpose, ded-
icated file systems and file hoarding methods have been designed [18, 11, 12].
File hoarding is the technique of preparing disconnections by caching critical
data. Differently from traditional caching, the cost of miss (or failure) can be
catastrophic if it occurs when the system is disconnected from the network. To
identify critical data, LRU policies augmented with user-specified hoard-priority
have been proposed as part of the CODA file system [18]. Here, priorities are used
to offset the LRU age of an object. In addition, the user is given the possibility
to interactively control the hoarding strategy (so called translucent caching con-
cept). Automated hoarding methods have been also recently presented [12, 11].

From another aspect, remote memories can be used as swap areas to tem-
porarily park run-time data and code when the total amount of available system
memory is not enough to contain user processes. In computer clusters remote
swap areas are designed to replace local swap partitions for performance rea-
sons. In fact, high speed links may provide faster access than local magnetic
disks especially under certain workload conditions, due to their high rotational
latency [24, 17]. While in the former aspect the main issue is reliability and user-
friendly access of remote data, here the key point is the performance. For this
reason, simpler and efficient supports have been proposed [19].

Remote swap areas can be exploited also by mobile devices, where local stor-
age space is limited and costly. Moreover, this is mainly used for storing applica-
tions or personal data. Nevertheless, the availability of a swap area increases the
total amount of virtual memory. As we will explain in more detail later, need for
swapping in mobile embedded devices is mainly required after a context switch
to bring in data the first time they are accessed. Network swapping in mobile
devices does not come for free. In fact, compared to computer clusters, they are
more bandwidth and energy constrained.

Remote swapping for handheld computing systems is a recent research topic
that has not been extensively studied so far. The problem of energy consumption
of network swapping in mobile devices has been faced by Hom and Kremer [15].
They propose a compilation framework aimed at reducing the energy by switch-
ing the communication device on and off by means of specific instructions in-
serted at compile time based on a partial knowledge of the memory footprint of
the application.

3 Swap Devices

We refer to the page-based swapping support provided by the Linux OS. Linux
performs a page swap in two situations: i) when a kernel daemon, activated once
per second, finds that the number of free pages has fallen below a given threshold;
ii) when a memory request cannot be satisfied. The page to be swapped-out is
selected in a global way, independently from the process that made the request.

218 E. Lattanzi, A. Acquaviva, and A. Bogliolo

The page replacement algorithm is based on an approximation of least recently
used (LRU) policy [9].

Modern operating systems equipping palmtops and PDAs make possible to
define heterogeneous support for swapping. Swapping can be performed both
locally to the PDA and remotely, by exploiting server storage capabilities and
network connections. More than one swap units can be enabled at the same time,
with assigned priority. The unit with the highest priority is selected by default
until it becomes insufficient.

3.1 Local Devices

On-board non-volatile memory is usually available in palmtop PCs to store the
bootloader and the filesystem. Magnetic disks can be added to extend file stor-
age capabilities. Swap can be made locally in palmtops as in desktop PCs. A
dedicated partition can be defined in hard drives or flash memories, where the
filesystem resides. Alternatively, some OS’s allow the user to define a swap file
that does not need a dedicated partition. Either way, the swap area comes at
the price of decreasing the space available for actual storage purposes.

Compact Flash
Palmtop PCs are equipped with on-board flash memories, but additional mem-
ory chips can be installed as an expansion if an external slot is present. Memory
Technology Device (MTD) drivers allow to define swap partitions or swap files
on flash memories. However, being read-most devices, flash memories are not
the ideal support for swapping. Nevertheless, we evaluate their swapping perfor-
mance since they are always present in palmtop PCs, being sometimes the only
alternative to network swapping.

Hard Disk
Today’s technology made available hand-sized magnetic disks (called mini of
micro drives) suitable to be installed in palmtop computers. Currently they
provide a storage capability up to 5GBytes. Like traditional hard disks (HD),
micro drives provide a seek time much longer than the access time to sequential
blocks. For this reason, access to these kind of devices is usually performed
in bursts whenever possible by exploiting on-board hardware buffers in order
to compensate for the initial transfer delay. The OS tries to limit the delays by
filtering disk accesses using software caches, whose size is limited by the available
space in main memory. When a micro drive used as a swap device, this trade-off
is even more critical, since increasing the memory space allocated for caching
decreases available main memory space that results in increasing the number of
swap requests.

3.2 Network Devices

In order to provide the performance required to fully exploit the channel band-
width, remote swap files can be mapped in the main memory of a remote server.
This is the choice we made for our experiments.

Network Swapping 219

Network File System
NFS (Network File System) is used in a network to enable file sharing among dif-
ferent machines on a local area. The communication protocol is based on a UDP
stack, while data transfers between NFS server and clients are based on Remote
Procedure Calls (RPCs). The idea of using NFS to support network swapping
is relatively recent [22]. To this purpose, a remote file must be configured as a
swap area. This is made possible by modern operating systems that allow the
user to specify either a device or a file as a swap unit.

Network Block Device
A Network Block Device (NBD) offers to the OS and to the applications running
on top of it the illusion of using a local block device, while data are not stored
locally but sent to a remote server [19]. As in case of NFS, the virtual local
device is mapped in a remote file, but the swap unit is viewed as a device, rather
than as a file.

This is made possible by a kernel level driver (or module) that communicates
to a remote user-level server. The first time the network connection is set-up,
a NDB user-level client negotiates with the NBD server the size and the access
granularity of the exported file. After initialization, the user-level NBD client
does not take part to remaining transactions, that directly involve the kernel
NBD driver and the NBD server. No RPCs are required in this case, thus re-
ducing the software overhead. Latest releases of NBD driver use an user level
network communication, which affects the performance of the protocol, since
data must be copied from the kernel to the user space address, but increases
flexibility. Differently from NFS, the underlying network stack is TCP instead of
UDP. This increases the reliability of network transfers, at the cost of increasing
the protocol overhead.

3.3 Wireless Network Virtual Memory Infrastructure

Remote virtual memory service is implemented by means of a client-server mech-
anism similar to that supporting file sharing, where the server allocates a memory
region to be used as a swapping space for a remote client.

The implementation of a wireless NVM services for MTs, however, imposes
new challenges related to: i) the performance and energy efficiency of the WNIC,
ii) the performance of the network and iii) the mobility of the terminal. In general
the bandwidth provided by the wireless network can be a critical bottleneck
requiring location-aware proximity services.

Using proxies in the wired network to support mobile devices is a well known
technique especially for web browsers [21, 20]. To enhance adaptability to client
movements and location awareness, the concept of proxy migration has been pro-
posed [23] for different applications such as audio streaming and WWW brows-
ing. More recently, caching mechanisms for web data on base stations have been
studied [21].

To support location-aware services in cellular networks, the personal proxy
concept has been introduced [5]. It collaborates with the underlying location

220 E. Lattanzi, A. Acquaviva, and A. Bogliolo

management system to decide when and how often it should move following the
MT. Finally, as for mobility management, a context caching approach has been
presented to reduce handoff delays in 802.11 wireless networks [16, 4].

4 Experimental Setup

We performed our experiments on a HP’s IPAQ 3600 handheld PC, equipped
with a Strong-ARM-1110 processor, 32MB SDRAM and 16MB of FLASH. Our
benchmarks were executed on the palmtop on top of the Linux operating sys-
tem, Familiar release 6.0. The WNICs used to provide network connectivity
were a LUCENT (hereafter denoted by NICLUCENT) and a CISCO AIRONET
350(NICCISCO), while the AP connected to the remote swapping server was
a CISCO 350 Series base station [3, 7, 6]. The remote server was installed on
a Athlon 4 Mobile 1.2 GHz notebook. For local swap experiments we used a
340 MB IBM Microdrive (HD) and a 64 MB Compaq-Sundisk Compact Flash
Memory (CF) [14, 8]. Power consumption of both WNICs and local devices was
measured using a Sycard Card Extender that allowed us to monitor the time
behavior of the supply current drawn by the card. The current waveforms were
then digitized using a National Instruments Data Acquisition Board connected to
a PC. A Labview software running on the PC was used to coordinate the acqui-
sition and bufferize current samples to compute power and energy consumption.

The remote swap NBD server was instrumented in order to collect time-
stamped traces of swapping activity during benchmarks execution.

The wireless NVM service infrastructure was obtained using two CISCO 350
Series base stations. NBD servers were installed on 2.8 GHz Intel Pentium 4
machines, equipped with 2 Gbytes of SRAM running 2.6.1 Linux OS.

4.1 Benchmarks

We developed synthetic benchmarks to characterize the inherent performance of
swap devices and to assess the feasibility of NVM.

For measuring the inherent cost of a page swap we developed a characteriza-
tion benchmark accessing a data structure much larger than the available main
memory without performing any computation on it. The pseudo-code of the
benchmark is shown in Fig. 1. A large matrix is allocated by row and initial-
ized and then read by column in order to maximize the number of page faults.

/*************** Benchmark 1 ***************/
double A[ROW][COL];
initialize(A,ROW,COL);
t0 = time();
read_by_column(A,ROW,COL);
t1 = time();
/***/

Fig. 1. Pseudo-code of the benchmark used to characterize swap devices

Network Swapping 221

/*************** Case study ****************/ double
dummy[2048][2048], C[128][128]; double A[128][128], B[128][128];
initialize(A,128,128); initialize(B,128,128);
initialize(C,128,128); initialize(dummy,2048,2048); //swap out t0
= time(); compute_product(A,B,C); t1 = time();
/***/

Fig. 2. Pseudo-code of the case study

The same benchmark was used to characterize swapping cost with and without
write-back, invoking either write by column or read by column procedures.

Validation was based on a benchmark (hereafter called case study) performing
matrix multiplication. The pseudo-code of the case study is reported in Fig. 2:
it simply computes the product of two square matrices A and B and puts the
result in a third matrix C.

Matrices A, B and C are first allocated and initialized, then a dummy matrix
exceeding the size of the physical memory is initialized in order to swap A, B
and C out from main memory. The initialization of the dummy matrix creates
boundary conditions similar to those possibly caused by the concurrent execution
of other processes. We monitor the execution time and the swapping energy
caused by the execution of the compute product procedure.

The distribution of swap requests for 128x128 matrices is shown in Fig. 4. The
expected distribution is also plotted for comparison. The large number of pages
requested at the beginning corresponds to the upload of the entire matrix B. In
fact, the first column of B has to be read in order to compute the first entry of
C. Since matrices are stored in memory by rows, reading the first column entails
swapping in the entire matrix, as shown in Fig. 3. Subsequent page requests are

Fig. 3. Memory access during matrix product computation

222 E. Lattanzi, A. Acquaviva, and A. Bogliolo

0 5 10 15 20 25 30
Execution time [s]

0

25

50

75

100

N
um

be
r

of
 p

ag
es

0 5 10 15 20 25 30
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

Theoretical needs
Page swapped

Fig. 4. Distribution of page requests

spaced in time according to the time required to compute 512 × 128 floating
point products.

Comparing the actual requests with the theoretical needs we observe that the
OS swaps 8 pages at a time, thus increasing the opportunity for DPM. However,
the total number of pages request by the OS is 104, while the three matrices fit
into 96 pages.

5 Characterization of Swapping Devices

In this section we present characterization results of swapping devices. In par-
ticular, in a first experiment we characterize the inherent swapping cost of each
device by running the characterization benchmark described in section 4.1. In
a second time, by using the case study benchmark we characterize the DPM
support of each device.

5.1 Inherent Swapping Cost

We measured the system time and energy spent to execute characterization
benchmarks and we divided the measured values for the number of pages swapped
in/out. Characterization results are reported in Table 1 in terms of time, energy
and power required by each device to swap a page of 4096 bytes. Both read-only
and write-back results are reported. In general, write-back doubles the cost (in
energy and time) of read-only swap, since it involves two data transfers. As ex-
pected, local devices are more efficient than WNICs. In particular, CF has an
energy-per-page more than 10 times lower than all other devices.

Experimental results are reported in Table 1 in terms of time, energy and
power required by each local and remote device to swap a page of 4096 bytes.
Both read-only and write-back results are reported.

Network Swapping 223

Table 1. Power consumption and performance of local and remote swap devices

Swap device Read-only Write-back
Type Mode Time Energy Power Time Energy Power

[ms] [mJ] [mW] [ms] [mJ] [mW]
CF local 4.1 0.201 49 8.2 0.402 49
HD local 3.0 1.911 637 6.4 4.061 637

NICCISCO NBD 7.0 5.934 848 14.0 10.319 735
NICCISCO NFS 8.5 6.123 720 14.6 10.516 720

NICLUCENT NBD 8.0 5.626 578 15.0 8.599 573
NICLUCENT NFS 10.0 5.243 524 22.0 10.672 485

In general, write-back doubles the cost (in energy and time) of a read-only
swap, since it involves two data transfers. As expected, local devices are more
efficient than WNICs and CF has an energy-per-page more than 10 times lower
than all other devices.

It is also worth noting that, for a given WNIC, NBD provides greater per-
formance than NFS, at the cost of a slightly higher power consumption. Since
the time reduction overcomes the additional power consumption, the energy per
page required by NBD is lower than that required by NFS.

5.2 Characterization of DPM Support

In the previous section we have characterized swap devices in terms of time
and energy requirements per swap page. To this purpose we designed a set of
benchmarks that simply accessed data structures much larger than the main
memory without performing any computation on them.

Although useful for characterization purposes, the characterization bench-
marks are unrealistic for two main reasons. First, computation time is usually
non-negligible, so that page requests are spaced in time according to a distribu-
tion that depends on the workload and on the state of the main memory. Second,
the total size of the data structures accessed by each application usually does not
exceed the size of the main memory, or otherwise the performance degradation
would not be acceptable.

In most cases of practical interest, swapping is mainly needed after a context
switch to bring in main memory data structures the first time they are used
by the active process. Moreover, in handheld devices there are often only a few
processes running concurrently, so that both main memory and peripherals are
mainly used by a single process at the time. In this situation, the usage pattern
of swapping devices are significantly different from those used for characterizing
swapping costs because of the presence of long idle periods between page swaps.

Since swapping devices spend power while waiting for page requests, the ef-
fective energy per page is larger than that reported in Table 1. On the other
hand, idleness can be dynamically exploited to save power by putting the de-
vices in low-power operating modes, or by turning them off. Dynamic power

224 E. Lattanzi, A. Acquaviva, and A. Bogliolo

Table 2. Power states of local and remote devices

Device State Power Timeout WU-time WU-power
[mW] [ms] [ms] [mW]

CF Read 107
Write 156
Wait 4.5

HD Read 946
Write 991
Wait 600
Sleep 24 2000 4500 ± 1980 1067

NIC Receive 755
(cisco) Transmit 1136

Wait 525
(PSP/PSPCAM) 113 0/850 14/14 400

Power-Off 0 any 370 451

NIC Receive 548
(lucent) Transmit 798

Wait 407
(PSP) 38 100 1 800

Power-Off 0 any 270 357

management (DPM) significantly impacts the performance and energy trade-off
offered by each device under bursty workloads.

The DPM support provided by each swap device is schematically represented
in Table 2. For each device, the key features of active and inactive operating
modes are reported. Active modes are characterized only in terms of power
consumption, while inactive modes are also characterized in terms of timeout to
be waited before entering the inactive state, wake-up time and wake-up power.
The data reported in the Table have been obtained by analyzing the current
profiles provided by the measurement setup described in Section 4.

First of all we remark that the average power consumptions measured during
page swaps (reported in Table 1) are not equal to the power consumptions mea-
sured for the devices during read/receive or write/transmit. In fact, for instance,
a page swap across a wireless link entails the transmission of the page request,
a waiting time corresponding to the latency of the remote device, the reception
of the page and, possibly, the write-back of a swapped-out page. The average
swapping power comes from the weighted average of all these contributions.

The CF has no inactive states. This is because its power consumption in wait
mode is negligible, making inactive low-power states useless. On the contrary,
NICs and HDs consume a large amount of power while waiting for service re-
quests, so that it is worth switching them to low-power inactive states during
long idle periods.

The Sleep state of the HD has the lowest power consumption, but the highest
wakeup cost in terms of power (higher than 1W) and time (in the order of sev-
eral seconds). Moreover, the wakeup time is highly unpredictable, its measured
standard deviation being almost 2 seconds.

Network Swapping 225

According to the IEEE802.11b standard, WNICs provide MAC-level DPM
support that can be enabled via software [16].

DPM support for WNICs is fully explained in tutorial [1]. The power save
protocol (PSP) provided by MAC-level DPM consists in placing the card in a
low-power state called doze mode, in which it sleeps but wakes-up periodically
to keep synchronized with the network and to check the access point (AP) for
outstanding data. A polling frame must be transmitted by the card for each
packet to be retrieved. PSP mode provides power savings at a cost of a no-
ticeable performance hit. To increase performance, a variation of this policy is
implemented by CISCO cards. They automatically switch from PSP to CAM
(Constant Awake Mode) when a large amount of traffic is detected. In this case
no polling frame is needed between packets since the reception and transmission
happen in active mode.

Even if the power consumption in sleep state is low, it is not negligible.
Moreover, the card is sensitive to broadcast traffic. A more aggressive policy
would require to completely shut-off the card when no needed by any active
application in the system. Thus, more power can be saved, at the price of a
larger wake-up delay needed by network re-association. OS-level policies can
be implemented to this purpose based on a power management infrastructure
recently developed for Linux OS [2]. This infrastructure is composed by a power
manager module that handles requests from applications and keeps track of
their resource needs. On the other side, upon a request, the power manager can
directly switch off a peripheral (WNIC in our case) if no other applications are
using it. Switch off request may come from user applications through dedicated
APIs or directly by a another kernel module. We exploited this feature to let the
NBD driver module switch on and off the card between swapping requests.

The features of doze and power-off modes are reported for both WNICs in
Table 2. We observe that the MAC-level DPM support of NICLUCENT is more

Table 3. Execution time and swapping energy required to run the case study bench-

mark

Device Exec. time [s] Energy [mJ]
Avg Std Avg Std

RAM 25 0 - -

CF 25.5 0.57 0.14 0.003

HD 25.31 - 15.20 -
(PM ON) 37.75 5.91 19.43 5.31

NICCISCO 26 - 16.51 0.01
(PSPCAM) 30.67 2.16 10.59 0.23

(PSP) 43.33 0.58 8.05 0.23
(OFF) 28.75 0.5 bf 2.47 0.09

NICLUCENT 30.25 0.5 13.60 0.56
(PSP) 30.0 0 2.54 0.096
(OFF) 30.0 0 1.76 0.08

Network Swapping 227

0

5

10

15

20

100

125

150

175

0

100

200

0 10 20 30 40
Time [s]

0

100

200

A B C D E F G

A B C D E F G

A B C D E F G

A B C D E F G

Compact Flash

Cisco WNIC

IBM uHD

IBM uHD

C
ur

re
nt

 [
m

A
]

Fig. 6. Power profiles of the different swap devices during the execution of the case
study benchmark

the variability of the head position and speed at the shutdown instants. In fact,
the two bottom traces in figure are obtained running the same benchmark. As
a reference, we marked swapping activity intervals with uppercase latin letters.

6 Mobility Management for Network Swapping

Although the feasibility and efficiency of remote swapping across a wireless link
is demonstrated by the results provided in previous sections, providing NVM
services to a MT raises additional mobility management issues. In this section
we propose location-aware proximity mechanisms that can be used to support
service mobility.

We discuss mobility management referring to Fig. 7. Two base stations (BS1
and BS2) are available to provide wireless network connectivity to a MT. Base
stations are connected to two local servers (LS1 and LS2, respectively) connected
together by means of a wide-band local link (LL). A remote server (RS) is also
available, connected to LS1 and LS2 by means of multi-hop remote links denoted
by RL1 and RL2, respectively. We assume the MT to be initially associated to
BS1 moving toward the service area covered by BS2. We want the NVM service
to survive the de-association from BS1 and the re-association to BS2.

Several solutions can be explored. However, an exhaustive exploration of
NVM architectures is beyond the scope of this tutorial. In this section we are
only interested in outlining a possible solution to demonstrate the feasibility of
wireless NVM infrastructure. To this purpose we envision a scenario where the
swap area of the MT is made available by the RS, while LS1 and LS2 provide
caching/proximity services to enhance performance.

228 E. Lattanzi, A. Acquaviva, and A. Bogliolo

MT

BS1 BS2

RL2RL1

LL

RS

LS1 LS2

Fig. 7. System architecture

Caching is a very common solution for many types of web services [13]. For
remote swapping, cache performance is even more critical due to the high access
frequency and to the blocking nature of swap requests. We assume that each MT
has a limited space (possibly much smaller than the total swap area) available
on a given LS to cache swap requests. In the limiting situation where the cache
contains all pages needed by a given application, the cache becomes a mirror and
the RS is used only to guarantee coherency among different caches. In the typical
case of caches smaller than swap space requirements, replacement algorithms
need to be implemented.

To guarantee cache coherence across handoffs, cache contents must be either
written back to the remote swap area, or migrated to the new location. In the
rest of this section we outline a simple write-back mechanism used to support
service migration.

When the MT de-associates from a BS1, all dirty pages in the cache on LS1
are written back to the remote swap area. When the MT re-associates to BS2,
a new empty cache is instantiated on LS2. The new cache is initially empty and
its efficiency is initially lower than that of the previous cache.

Service suspension time depends on the amount of dirty pages, which in turns
depends on the cache efficiency and size. Ideally, we would like the write-back
time to be completely hidden by the re-association time. To this purpose, a
location-aware write back trimming policy can be preemptively triggered by the
MT when it approaches BS2 in order to keep the number of dirty pages below a
given threshold (MAX). The value of MAX represents the amount of data that
can be written back during the handoff time.

Network Swapping 229

6.1 Implementation

We implemented the location aware NVM infrastructure based on the NBD
provided by Linux OS. The networked nature of NBD is completely transparent
to other kernel components (including the bdflush daemon and the page fault
handler that manage virtual memory) that may use the remote memory space
as any other block device.

The implementation of the mobility management policy described so far gives
rise to several issues. First, we need to be able to predict and control the 802.11b
handoff mechanism in order to exploit its inherent black-out time to perform
swap service migration. Second, we need to implement proximity caches. Third,
we need to switch at run time from a NDB server to another. All these issues
are addressed in the following.

802.11b Handoff Management
MTs use automatic active scanning to find a new BS when the signal of the
current one falls under a given threshold. If a valid BS is found in range, the re-
authentication phase automatically starts. Re-authentication involves the trans-
fer of credentials and other information from the old BS (say, BS1) to the new
one (BS2). If authentication is successfully completed the MT de-associates from
BS1 and re-associates to BS2. The handoff protocol is completely transparent
to the user. However, we need to take control of the handoff in order to ex-
ploit de-association and re-association time for swap-service migration. To this
purpose we created a daemon process, running on the MT, that disables auto-
matic active scanning and periodically scans for new BS’ in range. In order to
implement a user-level scanning routine we used the mwvlan driver for Wavelan
IEEE/Orinoco that enables scanning control. For each BS in range we take SNR
values in order to decide when to trigger handoff and towards which BS. We use
a simple two-threshold roaming algorithm to trigger handoff as in the Sabino
System [10]. When the SNR of current BS falls under the first threshold we
scan for a new BS in range. When it falls under the second threshold we force
re-association to the new BS.

Proximity Caches
Caches local to the BS are implemented as C++ objects containing a STL C++
map object. The map object is an associative container for (key, value) couples,
where value can be any C++ object. To implement a cache of swap requests,
we use memory pages as values and page identifiers as keys. A memory page is
an instance of a simple C++ class, called Page, that contains page data and two
flags, r flag and w flag, to store information about read and write activity to
be used to implement replacement and migration policies.

Since caches need to be accessed from different servers during swap service
migration they have been implemented as CORBA objects by specifying their
remote interface using OMG IDL (Object Management Group Interface Defini-
tion Language). We used the omniORB 3.0 CORBA Linux implementation and
its SDK to generate the C++ stub and skeleton interface.

230 E. Lattanzi, A. Acquaviva, and A. Bogliolo

NBD Server Switching
Swap service migration entails switching between two different machines provid-
ing NBD services. In principle, this can be done by changing the socket pointer
into the block device. However, the Linux NBD doesn’t allow the user to do so
without loosing the content of the virtual memory, thus causing a kernel panic.
The key issue is making server re-association atomic in order to prevent the vir-
tual memory management to issue swap requests during service black out. To
this purpose we implemented a specific system call (NBD CHANGE SOCKET) locking
the block device while changing the socket pointer and reestablishing the swap
service. The system call can be invoked to perform swap service migration even
during swap activity.

6.2 Handoff Characterization

In order to characterize service migration overhead we run the characteriza-
tion benchmark described in Section 4.1 generating a constant pattern of swap
requests at the maximum sustainable rate.

We first run the benchmark with the swap area local to the BS, without
performing any handoff during execution, to obtain a baseline performance. Then
we run the benchmark again while performing the handoff operations under
characterization, in order to estimate their overhead by means of differential
performance measurements. Two kinds of handoff operations were characterized:
BS-only handoff, consisting of de-association from BS1 and re-association to
BS2 while using the same swap server, local to both base stations; Server-only
handoff, consisting of disconnection from a local swap server and re-connection
to a new server sharing the same swap file. The joint effect of BS and Server
handoffs was also measured by performing both operations during the same run
of the benchmark. Each experiment was repeated 10 times.

Results are reported in Fig. 8. Notice that using local swap servers accessing
a shared swap file allowed us characterize inherent handoff times, independent
of the mobility management policies.

6.3 Testing the NVM Infrastructure

We tested the NVM infrastructure using the case study benchmark of Section
4.1. Large matrices, of 1024x1024 elements each, where used in this case to make
the experiments long enough to be affected by mobility issues.

To evaluate the performance overhead caused by the NVM infrastructure,
the benchmark was first executed without handoff with three different configu-
rations of the swap server: A) using a 100Mbytes swap area installed on a local
server, B) using a 100Mbytes swap area installed on a remote server, C) using
a 100Mbyets remote swap area with a 12Mbytes proxy cache local to the BS.
For these experiments the bandwidth of the remote link was artificially limited
to 2Mb/s. The same benchmark was then executed with a synchronous handoff
triggered right after computation of the first 200 rows (D).

Network Swapping 231

1.26

0.86

1.92

0

0.5

1

1.5

2

2.5

tim
e

(s
)

BS-only handoff Server-only handoff BS+Server handoff

Fig. 8. Experimental hand-off time

0

5

10

0

1

2

3

0

1

2

3

tr
af

fi
c

[M
b/

s]

1

2

3

0 50 100 150
time [s]

0

1

2

3

126.47

149.76

138.12

LS

148.34

A

B

C

D

RL

RL

RL1

RL2

Fig. 9. Link Bandwidth Occupation of Swap Area Management Policies

Experimental traces showing the traffic generated by swap requests are re-
ported in Fig. 9 for each experiment. The computation time of the first 400 rows
is also annotated on each graph. The first three traces, referring to local, remote
and cached NVM without handoff, show the impact of proximity on performance:
accessing a remote swap server increases the execution time from 126.47 to 149.76
seconds, while caching provides a trade-off at 138.12 seconds. The filtering effect
of the cache can be appreciated by comparing graphs B and C: graph B shows a
baseline traffic of about 0.4Mb/s on the RL that doesn’t appear on graph C.

232 E. Lattanzi, A. Acquaviva, and A. Bogliolo

The efficiency of the handoff mechanisms can be evaluated from graph D of
Fig. 9, that shows the traffic induced on remote links RL1 and RL2 by write-
back. Notice that a large number of cache misses is generated after re-association
since a new (empty) cache is instantiated on LS2.

7 Conclusions

In this tutorial we have presented two main results. First, we have demon-
strated that remote virtual memory made accessible from mobile terminals by
means of wireless network interface cards can be competitive, both in terms
of power and performance, with respect to local virtual memory mapped on
microdrives. Second, we have proposed a simple infrastructure that provides
efficient support to network virtual memory for mobile terminals. We have
shown that efficiency requires proximity and we have proposed a location-aware
caching strategy to keep virtual memory pages local to the base station grant-
ing wireless network connectivity to the mobile terminal. A mobility manage-
ment mechanism has been proposed to support service migration during handoff
events.

The proposed strategies have been implemented in practice and tested on a
working prototype. Experimental results demonstrate the feasibility of network
virtual memory.

References

1. A. Acquaviva, E. Bontà, E. Lattanzi, ”Dynamic Power Management Strate-
gies Within the IEEE 802.11 Standard”, Formal Methods for Mobile Computing,
LNCS 3465, Bertinoro, Italy, April 2005.

2. A. Acquaviva, T. Simunic, V. Deolalikar, S. Roy, ”Remote Power Control of Wire-
less Network Interfaces”, Proceedings of PATMOS, Turin, Italy, Sept. 2003.

3. Agere, 802.11 Wireless Chip Set White Paper, http://www.agere.com/client/docs/
multimode white paper.pdf, 2003.

4. A. Mishra, M. Shin, W. Arbaugh, ”Context Caching Using Neighbor Graph for Fast
Handoffs in a Wireless Network”, Technical Report CS-TR-4477 and UMIACS-TR-
2003-46, Dep. of CS, Univ. of Maryland, USA.

5. B. Gu, I. Chen, ”Performance Analysis of Location-Aware Mobile Service Proxies
for Reducing Network Cost in Personal Communication Systems”, ACM/Kluwer
J. on Mob. Net. and Appl.s, 2004.

6. Cisco System, Cisco Aironet 350 Series Access Points, http://www.cisco.com/
univercd/cc/td/doc/product/wireless/airo 350/accsspts/index.htm, 2003.

7. Cisco System, Cisco Aironet 350 Series Wireless LAN Adapters,
http://www.cisco.com/univercd/cc/td/doc/product/wireless/airo 350/
350cards/index.htm, 2003.

8. Compaq, compact flash cards, http://www.hp.com/products1/storage/
products/storagemedia/flash cards/index.html, 2003.

9. D. Bovet, M. Cesati, ”Understanding the Linux Kernel”, OŔeally & Associates,
Sebastopol, CA, Jan. 2001.

Network Swapping 233

10. F. K. Al-Bia-Ali, P. Boddupalli, N. Davies, ”An Inter-Access Point Handoff Mech-
anism for Wireless Network Management: The Sabino System”, Proc. of ICWN,
2003.

11. G. Kuenning, G. J. Popek, ”Automated Hoarding for Mobile Computing”, Proc.
of Symposium on Operating System Principles, pp. 264–275, Oct. 1997.

12. G. Kuenning, W. Ma, P. Reiher, G. J. Popek, ”Simplifying Automated Hoarding
Methods”, Proc. of MSWiM, pp. 15–21, Sept. 2002.

13. H. Chang, C. Tait, N. Cohen, M. Shapiro, S. Mastrianni, R. Floyd, B. Housel,
D. Lindquist, ”Web Browsing in a Wireless Environment: Disconnected and Asyn-
chronous Operation in ARTour Web Express”, Proc. of MCN, 1997.

14. IBM, 340MB Microdrive Hard Drive, http://www.storage.ibm.com/
hddredirect.html?/micro/index.html, 2003.

15. J. Hom, U. Kremer, ”Energy Management of Virtual Memory on Diskless Devices”,
Proceedings of COLP, Barcelona, Spain, Sept. 2001.

16. LAN/MAN Standards Committee of the IEEE Computer Society. Part 11: Wire-
less LAN MAC and PHY Specifications: Higher-Speed Physical Layer Extension in
the 2.4 GHz Band, IEEE, 1999.

17. M. D. Flouris, E. P. Markatos, ”The Network RamDisk: Using Remote Memory
on Heterogeneous NOWs”, Cluster Computing, pp. 281-293, 1999, Baltzer Science
Publishers.

18. M. Satyanarayanan, ”The Evolution of Coda”, ACM TOCS, Vol. 20, Issue 2,
Pages: 85–124, May 2002.

19. P. T. Breuer, A. Marin Lopez, A. Garcia Ares, ”The Network Block Device”, Linux
Journal, Issue 73, May 2000.

20. R. Ruggaber, J. Seitz, M. Knapp, ”π2 - a Generic Proxy Platform for Wireless
Access and Mobility in CORBA”, Proc. of ACM PODC, 2000.

21. S. Hadjiefthymiades, V. Matthaiou, L. Merakos, ”Supporting the WWW in Wire-
less Communications Through Mobile Agents”, Kluwer J. on Mob. Net. and Appl.s,
2002.

22. ”Swapping via NFS for Linux,” http://www.nfs-swap.dot-heine.de
23. T. Kunz, J. P. Black, ”An Architecture for Adaptive Mobile Applications”, Proc.

of ICWC, 1999.
24. T. Newhall, S. Finney, K. Ganchev, M. Spiegel, ”Nswap: A Network Swapping

Module for Linux Clusters”, Proceedings of Euro-Par, Klagenfurt, Austria, Au-
gust 2003.

Hermes: Agent-Based Middleware for
Mobile Computing�

Flavio Corradini and Emanuela Merelli

Università di Camerino, Dipartimento di Matematica e Informatica,
Camerino, 62032, Italy

{flavio.corradini, emanuela.merelli}@unicam.it

Abstract. Hermes is a middleware system for design and execution of
activity-based applications in distributed environments. It supports mo-
bile computation as an application implementation strategy. While mid-
dleware for mobile computing has typically been developed to support
physical and logical mobility, Hermes provides an integrated environ-
ment where application domain experts can focus on designing activity
workflow and ignore the topological structure of the distributed envi-
ronment. Generating mobile agents from a workflow specification is the
responsibility of a context-aware compiler.

Hermes is structured as a component-based, agent-oriented system
with a 3-layer software architecture. It can be configured for specific ap-
plication domains by adding domain-specific component libraries. The
Hermes middleware layer, compilers, libraries, services and other devel-
oped tools together result in a very general programming environment,
which has been validated in two quite disparate application domains, one
in industrial control and the other in bioinformatics. In the industrial
control domain, embedded systems with scarce computational resources
control product lines. Mobile agents are used to trace products and sup-
port self-healing. In the bionformatics domain, mobile agents are used to
support data collection and service discovery, and to simulate biological
system through autonomous components interactions.

1 Introduction

Industrial production processes, the in-silico daily work of bio-scientists, and
many other jobs are usually performed by executing a set of distinct, some-
times repetitive, activities [54]. Automating such an application process in a
distributed environment requires coordination of these activities, but also lower
level implementation support in sharing of data, localization of reliable resources,
retrieval of suitable information, integration of heterogeneous tools, discovery

� This work was supported by the Fulbright grants, by the Center of Excellence for Re-
search “DEWS: Architectures and Design Methodologies for Embedded Controllers,
Wireless Interconnect and System-on-chip” and by Italian CIPE project “Sistemi
Cooperativi Multiagente”.

M. Bernardo and A. Bogliolo (Eds.): SFM-Moby 2005, LNCS 3465, pp. 234–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Hermes: Agent-Based Middleware for Mobile Computing 235

and selection of the best available services, and mobility of computational units.
The application designer, whose primary expertise is in the application domain,
should be free to focus on coordinating domain activities rather than being con-
cerned with the distributed computational environment.

In the domain of production processes control, for example, supply chain man-
agement [33] has been developed mainly with workflow-oriented technology for
networks of fixed distributed systems. The present need to trace products1 and
to extend the chain with customers (e.g. domestic appliances, items of clothing,
food), requires flexible workflow management systems encompassing embedded
systems and mobile devices (e.g. PDAs for technical assistance), and supporting
code mobility (e.g. for traceability and self-healing) [41, 52].

In the bioinformatics domain, a flexible workflow management system could
be used to carry out many activities whose execution environment is the Web,
which is distributed and dynamic in nature, with large amounts of highly dy-
namic data and proliferation of (often redundant) tools. In fact, many bio-
scientists aspire to automate some of the time-consuming activities to the base
of wet-lab procedures, as browsing, searching and selecting resources [37, 50]
so as to use flexible and expandable computational analysis and simulation
tools during their in-vitro exeperiments. Advantages of moving computational
“bio-instruments” over data, by delegating a mobile agent, include decentral-
izing execution of local activities, avoiding the warehousing of highly dynamic
data, reducing network traffic, and freeing researchers from network faults and
from the need to be continuously connected to a laptop. Mobile devices could
also support a bio-scientist moving among different laboratories during his
experiment.

Experience with these two, quite different domains suggests that applicability
of Hermes-like systems is quite wide, and that many other application domains
could take advantage of flexible, modular, expandable, easily configurable and
scalable middleware which supports workflow management and uses mobile com-
putation as activity implementation strategy.

Middleware technology is an emerging and promising technology that pro-
vides application designers with a high level of abstraction, hiding the complexity
introduced by distribution (Figure 1)[57]. Middleware for mobile computing, in
particular, is becoming a widespread technology [51, 38]. Mobile computing sys-
tems, in the sense of computing systems that can be easily moved physically and
whose computing capability may be used while they are being moved, have been
empowered by the diffusion of satellites and cellular technology[3].

The wide range of different developers of mobile devices has led to develop-
ment of many different middleware systems, which differ in the type of computa-
tional loading (heavyweight, lightweight) of the mobile unit, the type of commu-
nication paradigm (synchronous, asynchronous) used among distributed units,
and the type of context representation (transparency, awareness) provided to the
mobile application. In general, a mobile system can be characterized by mobile

1 European Community Directive 2001/18/EC.

236 F. Corradini and E. Merelli

Fig. 1. A Distributed System organized as middleware [57]

device executing on a light computational load, by a intermittent connection with
asynchronous communication, and by a dynamic context with awareness of re-
source distribution. Mascolo et al [38] provide a comprehensive survey of mobile
computing middleware; B’Far [3] gives an overview of principles of mobile com-
puting. Further distinction can be found between middleware systems developed
only to support physical mobility (which are traditionally application-centred
[51]) and more general middleware systems [43, 45, 31, 32] developed especially
to support the coordination of mobile components, most of which are based on
tuple spaces of the Linda model [28] to support decoupled communication.

In this work, we exploit mobile agents as computational units that logically
move to support execution of a distributed application. Consistent with B’Far
[3] we see mobile agent particularly suitable for the following reasons:

1. mobile agents are inherently active because of their autonomous nature,
2. mobile agents use less network bandwidth in comparison to RPC or RMI,
3. mobile agents can display better response times owing to reduced effect of

network latency on the application,
4. mobile agents are inherently heterogeneous,
5. mobile agents are autonomous and asynchronous and so can deal with inter-

mittent network connectivity gracefully,
6. mobile agents can adapt extremely well.

Providing an application designer with a transparent global view of the dis-
tributed environment, with a user-friendly programming environment and exe-
cuting distributed applications exploiting mobile computation, through a light
and flexible mobile middleware, is the aim of Hermes2. Hermes is a component-

2 In Greek mythology, Hermes is the son of Zeus and Maia. He is also known as Mercury
to the Romans. Hermes is Zeus’s messenger, the fastest of the gods, recognizable by
his winged sandals.

Hermes: Agent-Based Middleware for Mobile Computing 237

Fig. 2. A Distributed System over Hermes Middleware in heterogeneous environment.

Only the Hermes mobile platform (dark layer) is required for interoperability, but

additional components can be added to support workflow

based, agent-oriented system with a 3-layer software architecture [9, 15]: user
layer, system layer and run-time layer. At the user layer, it allows design-
ers to specify their applications as a workflow of activities using the graphi-
cal notation provided by JaWE editor [21]. At the system layer, it provides
a context-aware compiler to generate a pool of user mobile agents from the
workflow specification. At the run-time layer, it supports the activation of a
set of specialized service agents, and it provides all necessary to support agent
mobility.

One of the main features of Hermes middleware is its scalability. The present
version, HermesV2 [29], is a pure Java application whose kernel requires about
80KB of memory and interoperates across a systems ranging from microproces-
sors to very power workstations (Figure 2). The lightness of its core is based on
the unique class Agent, which assigns the basic features to each agent, including
mobility. Agent is an abstract class, with two associated extensions UserAgent
and ServiceAgent (Figure 3).

The main difference between run-time layer and system layer is how agents
function in each. ServiceAgents in the run-time layer are localized to one platform
to interface with the local execution environment. UserAgents in the system
layer are workflow executors, created for a specific goal that, in theory, can be
reached in a finite time by interacting with other agents, afterwards the agent
die. Furthermore, for security UserAgents can access a local resource only by
interacting with a ServiceAgent that is the “guard” of the resource (Figure 4).

We can summarize that Hermes uses activity-based workflow modelling, as
an high-level programming language. It uses agent-based modelling as an in-
termediate programming language, and it uses mobile computing as run-time

238 F. Corradini and E. Merelli

Fig. 3. Hermes agents hierarchy. The Java class “Agent” is extended with “UserAgent”

which is the prototype of the the workflow executor, and with ServiceAgent used to

interface local resources. Only ServiceAgent can invoke operating system functions

Fig. 4. Access Control in Hermes Middleware is based on different access rights given

to two “Agent” extension. The instances of ServiceAgent act first as a barrier towards

the local resources then once the a UserAgent has been identified as an interface

support of the execution of mobile agent systems generated with respect to the
functional and non-functional requirements of the distributed application.

We have also developed a set of tools particularly meaningful for an effec-
tive implementation of Hermes middleware. Among these a generalize wrapper
[4] to support the extraction and the integration of heterogeneous resources, an
interface to dynamically access Web Services [60], an ontology manager which

Hermes: Agent-Based Middleware for Mobile Computing 239

supports the mapping among different resource schemas [18] and a matchmaker
to discover and select services [14]. Furthermore, we have defined a mapping
from UML Activity Diagram and CSP-like process algebra to allow the analysis
and verification of the behaviour of the workflow designed by the user [1].
We are also working on a graphical notation to represent the mobility and execu-
tion environment of a pool of agents, its mapping to Klaim, i.e. a process calculus
for mobile computing [19]. We would like to use Klaim language and Klava, i.e.
the implementation of Klaim in Java, into Hermes compiler to implement agent
level workflow.

Recently, Hermes has been used as simulation programming environment in
systems biology [17]. We have modelled and implemented a system to simulate
carbohydrate oxidation of a biological cell. The course-grain approach allowed
us to identify the autonomous computational units of the software system in
those cellular elements that exhibit the behavior of a computational environ-
ment (cytoplasm, mythocondrial matrix, etc.). While all elements are agents
whose activities were implemented for the case study, in future we aim to map
the abstract machines for systems biology provided by Luca Cardelli [10] to
Klaim within Hermes architecture. The agent mobility will characterize the real
movement of cellular components within and through the cellular environments
(compartments and membranes).

In the remainder of this tutorial, in Section 2 we set the context in which
the Hermes middleware has been developed. In Section 3 we outline some of the
formalism, techniques and systems have been chosen to bear the design of the
global computing environment and we draw reader attention to Hermes software
architecture. Next, in Section 4 we propose some application examples taken
from our experience in designing and implementing applications within specific
application domains. Finally, in Section 5 we discuss future work and conclude.

2 Setting the Context

Distributed Environment DE

The distributed environment (DE) for mobile computing we refer to consists
of collection of autonomous and mobile computational units interconnected by
a communication media. It can be distributed over a wide area network (as in
the bioinformatics case study), over a local area network (as in the production
plant) or it can be a simulation of a distributed system (the systems biology
example).

The first DE we consider is the Web. It is characterized by dynamic execution
context, intermittent connection, unpredictable congestion, faulty communica-
tion, presence of security barriers, and heterogeneous, distributed and unstable
resources. The second DE is characterized by permanent network connection,
but it still deals with the management of heterogeneous resources. The last DE
is a virtual distribution. All the mobile computation can happen within a single
machine, or among homogeneous machines or heterogeneous ones (e.g. grid com-

240 F. Corradini and E. Merelli

puting). They vary in the way they hide and manage problems deriving from
the execution environment.

In our context, there are two different logical mobile computational units:
at the system level, there are flexible, autonomous, pro-active3 units, situated
in a dynamic, sometimes open, unpredictable computational environment. We
call them UserAgents; they are created in a specific computational environment
to solve problems in a certain application domain, they are coordinated by a
suitable communicate model, they can move to reach a different computational
environment to better fulfil the goal for which they have been created. At the run
time level, there are autonomous mobile units with the special task to manage
local and networks resources. We call them ServiceAgents, they are units created
any time a new resource becomes available in the distributed environment.

Distributed Applications DA

A distributed application (DA) consists of a set of coordinated activities that use
distributed resources. Workflow models are useful notations of coordination to
link these activities together. If we consider a workflow as a distributed program
and a workflow management (WMS) as its run-time support, the functionality
provided by a WMS is similar to that offered by a middleware system in a
distributed environment.

Workflow models are supported by a number of systems for business process
automation and process control, but typically the model is fixed and hard-wired
in the application, or configurable only through a very heavyweight customiza-
tion process. In contrast, our approach makes specifying, modifying, and exe-
cuting workflow a very lightweight. In the bioscience domain, for example, it is
practical to develop workflow support for the varied idiosyncratic processes of
individual scientists, and so free the bioscientist from from repetitive interactions
with the execution environment. To the extent that workflow specifications are
shared, it is also possible to incrementally support standardization of protocols
and creation of a transparent analysis environment.

Workflow is specified abstractly in a graphical notation and mapped to a set
of autonomous computational units (UserAgents) interacting through a commu-
nication medium. The mapping is achieved by a compiler that is aware not only
of the contents of a library of implemented user activities but also the software
and hardware environment for executing them. In our case, information available
to the compiler includes available hosts and their connection topology, available
services (ServiceAgents), the kinds of information available at different locations,
and additional domain-dependent parameters. Application-independent rules for
dealing with connectivity failure, service access failures, etc., are embedded in
UserAgents and ServiceAgents. A user specifying workflow need not be concerned
with where to search for information, in what form the information is stored, the

3 For proactive, we mean controlling a situation by causing something to happen rather
than waiting to respond to it after it happens.

Hermes: Agent-Based Middleware for Mobile Computing 241

protocols for interacting with each service, or a host of other low-level details
that can be left to the context-aware compiler.

Mobile Computing
In the above described scenario, we said that user activities are mapped into
system activities, by UserAgents. The pool of agents must coordinate to execute
user level workflow, possibly by migrating from one environment to another and
coping with any of the unpredictable phenomena due to distribution. The agent
mobility is supported by a light platform that characterizes the middleware.

This approach to exploiting mobile computing during the development leads
to the definition of a (new methodology) to guide software development, from
analysis and specification, design and validation, coding and testing, deployment
and maintenance. In particular, the analysis phase imposes the choice of applica-
tion domain (e.g. bioinformatics), identification of common user activities (e.g.
sequence similarity search, functional motif search, protein analysis, etc. [54]).

Next, the design phase concerns specification of workflow of activities and its
validation by suitable tools [1]. The coding phase is linked to the engineering of
the layer below.

At the system layer, the main component is the context-aware compiler,
whose engineering depends on both the application domain and the execution
environment requirements. The design phase of the compiler relies in a two steps:
step 1: the User Level Workflow (ULW) (Figure 6) is mapped to Agent Level
Workflow (ALW); step 2: the ALW is coded in a pool of mobile Workflow Execu-
tors (WEs) the UserAgents. The generation of a ALW also implies the choice of
suitable coordination model, i.e the communication media used among agents.
Also this choice is conditioned by the application domain features. The first
step will generate a specification of agent level workflow whose validity must be
checked. Thus, tools different from those in the upper layer will be required since
the mobility is also included [42, 11, 19]. Then, the coding phase is linked to the
engineering of the layer below as well.

Implementation of system activities is based on the services offered by the
run-time layer, including both those belonging to the kernel and those offered by
the execution environment of the application domain. In the run-time layer the
use of mobility is tied to the physical distribution of resources. In the layered ar-
chitecture, mobility can play a twofold role. At user agent abstract levels it fulfills
a modelling function while at service agent level it fulfills a reliability function.

In the Section 4, we describe two applications developed for two different ap-
plication domains: functional testing and self healing in domestic appliance man-
ufacturing [8]; medical bioinformatics [2, 39, 4, 5, 40] and systems biology [17]. We
outline how mobility covers different and distinct aspects of the implementation
in each of these domains and finally we describe a set of services and tools we
have developed for Hermes.

In the next section, first we describe the functionalities of Hermes 3-layer
architecture, then we describe a methodology to develop the Hermes mobile
platform for an given application domain.

242 F. Corradini and E. Merelli

3 The Hermes Software Architecture

We now describe the general software architecture of Hermes, a middleware sys-
tem for the design and development of distributed applications upon a mobile
computing platform. This architecture has been successfully used to design an
agent-based tool integration system [16]. The architecture consists of three con-
ceptual layers as shown in Figure 5.

Fig. 5. The 3-layer Software Architecture for Hermes Middleware. The User Layer
provides the editing workflow environment, the System Layer generate a mobile agent

system to support the execution of the workflow and the Run-Time Layer provides all

necessary to interact and move along the distributed environment

A User Layer, on the top of the architecture, where the user specifies his
application as a workflow of activities with the features described above. Since
our potential users may not be computer practitioners, the specification language
must be simple and intuitive to use as, in most cases, graphical notations are.

A System Layer, on the middle of the architecture, provides the needed en-
vironment to map a user-level workflow into a set of primitive (and already
implemented) activities. The execution of these latter is coordinated by suitable
model, they implement the activities at the user level and embed implemen-
tation details abstracted from the execution environment (fault tolerance, for
instance). These primitive activities are implemented by autonomous software
entities UserAgent able to react to the environment changes where they are
executed. The agent-based paradigm and technology, as argued several times in
the literature (see, for instance [34], and references therein), seem to be par-
ticularly suitable for designing environments populated by entities that com-
municate and coordinate their activities (as most of the applications of our
interest are). A particular significant ingredient at this layer is the compiler
that maps user level activities into system level activities. The compiler must be
aware of the available a library of implemented activities but more significantly
it must be aware of the environment (software/hardware resources, knowledge,
services...).

Hermes: Agent-Based Middleware for Mobile Computing 243

A Run-Time Layer, at the bottom of the architecture, provides primitives
and services essential for agent mobility and resources access. The kernel is the
platform for mobile computing which provides primitives for discovery, mobility,
communication, and security.

As the Figure 5 shows, the three layers, User Layer, System Layer and Run-
time Layer, are themselves split in two conceptual levels: - the type of application
running on each layer and - the infrastructure supporting the application. At the
user layer, the application is the workflow and the infrastructure is the workflow
management environment (editor, model checker, . . .). At the system layer, the
application is a pool of running agents UserAgents named Workflow Executors
(WEs), and the infrastructure is given by the agent management system (com-
piler, model checker, query optimizer, . . .). Finally, at the run-time layer, the
application is given by a set of services ServiceAgents and the infrastructure
consists of the mobile computing platform for agents mobility.

Fig. 6. Entities located at each Layer of Hermes Architecture. Any user level workflow

(ULW) is mapped into an agent-level workflow (ALW) and compiled to a pool of mobile

user agents, the workflow executors (WE) which interact with the service agents (SA)

��������� 	�������
 	��������

	� 	� 	�

���������

���������

���������

�������
�

�������
�
���������

�����������

�����������

���������
�

���������
�
�����������

�

�

��

�� ��

����������������

���������������

���� !�������������

��!��

"
�
#

$
�%

�
�
!

�
�
�

	
�
�
�
�
%

�
!

�
�
�

�
�
�
�
�
!

�
�
�

��� � ���
 ��� �

�&�#� !�����������������!��

244 F. Corradini and E. Merelli

The Figure 6, moreover, presents the same architecture with the entities cre-
ated at each level of abstractions: the user defines a User-Level Workflow (ULW)
specification that is mapped to an Agent-Level Workflow (ALW) specification;
the ALW specification is then used to generate a pool of Workflow Executors
(WEs) implementing all specified activities; WEs interact with distributed en-
vironment through through serviceAgentss (SA).

3.1 Hermes Layers Functionalities

It follows a detailed description of the main components and functionalities of
each layer.

User Layer

The user layer is based on workflows and provides to users a set of programs for
interacting with the wokflow management system. There are two main families
of programs: programs for specifying, managing and reusing existing workflow
specifications, and programs enabling administration and direct interaction with
the workflow management system.

The workflow editor is the program that supports the workflows specifica-
tion by composing activities in a graphical environment. The editor enables the
specification of workflows complying with the WfMC reference model [30] and
is implemented by using the JaWE [21] editor. Activities used in a workflow are
configured by specifying input parameters and their effects are recognizable as
modification of state variables or modification on the environment’s status. The
workflow editor enables the composition of both primitive and complex activi-
ties. A primitive activity is an activity that can be directly executed. A complex
activity is an activity that must be specified before it can be used; the spec-
ification of a complex activity is a workflow of complex and simple activities.
By using complex activities the specification of workflows is simplified because
they enhance both hierarchical specification and reuse: we can use an already
existing complex activity without caring of its specification. Users can use com-
plex activities and stored workflows to increase productivity when specifying
new workflows. Moreover, large libraries of both domain specific primitives and
complex activities can be loaded to specialize the editor for a specific applica-
tion domain.

Each activity can be configured with four parameters: the input data for-
mat, the output data format, the environment and its description. The input
data format specifies which is the accepted input for a given activity. In similar
way, the output data format specifies the accepted output data formats. The
environment parameter is used to specify in which context an activity must be
performed, since the same activity with the same parameters can be performed
in different contexts. The environment is separated from the other input param-
eters because it can cause either the migration of a code or the selection of a
specific implementation of the activity, while input parameters denote only data
transferring. For example, consider an activity associated to the use of a specific
tool implementation available in a given repository, it implies the deployment of

Hermes: Agent-Based Middleware for Mobile Computing 245

tool on a remote site and the activation of the tool. In a similar way, consider an
activity to search a given information on a given database, the activity is always
the same, but its implementation is very different with respect to the target
database, i.e., different authentication method, different querying interface and
different naming, hence the information on the target database is used to se-
lect the proper implementation of the activity. Finally, the activity description
is used either when it is not possible to achieve transparency or when the user
prefers to decide by himself where and how to execute a certain activity.

System Layer

The system layer hosts WEs which are UserAgents generated from the ULW
specification. WEs execute and coordinate their actions to reach the fulfilment
of the ULW specification. Some of the actions executed by WEs need interaction
with the services (SAs); these actions correspond to operations that must be
completed by interacting with a remote service.

In the case the distributed execution environment is open, the communica-
tion between agents takes place once the negotiation of communication protocol
(the ontology) is successfully accomplished. By fixing an ontology, the agree-
ment on the semantics is guaranteed, but information that can be exchanged is
constrained; in fact agents can use only concepts defined in the ontology. In the
case the system has defined a shared common ontology, the ontology negotiation
procedure always successes.

Now we described the two phases agent generation procedure that is per-
formed by the compiler. In the phase 1) the ULW is mapped to an ALW, and
in the phase 2) the ALW is used to generate WEs. The ALW is a specification
similar to the ULW, but it takes into account the existence of the agents that will
execute the actions and it contains only primitive actions (actions that can be
directly executed without decomposing them in workflows). Since the compiler
is under development we can not provides implementation details, but only its
main functionalities.

Phase 1: Mapping the ULW to the ALW The mapping from the ULW to the
ALW is performed by recursively substituting activities of the user-level spec-
ification with a workflow of primitive agent-level activities. This mapping is
performed by accessing to the User-Level Activity Database (ULAD) that main-
tains the correspondence between user-level activities and ALW. There are other
rules managing technicalities of the transformation process, for example branch-
ing of the execution is translated to an agent creation activity and a join of
two branches are translated to a coordination activity between multiple agents.
Moreover, in the case the compiler recognizes a set of independent activities,
it can distribute them among several agents to increase parallelism. The set of
activities assigned to the same agent constitutes its body, therefore the result of
this mapping consists on a set of workflows: one for each agent. Activities belong-
ing to an ALW specify actions at a low-level of abstractions that can be directly
executed. Messages are sent from an agent to another by using communication

246 F. Corradini and E. Merelli

activities, i.e., an activity whose execution consists on sending a message to the
receiver. Actually communication consists of sending and receiving single mes-
sages, in the future we want to extend this approach to definition of protocols
that must be respected during inter-agent communication.

The ALW specifies all entities involved in the execution of a workflow, thus
the constraint of spatial and temporal coupling communication can be respected
since the compiler knows exactly when communication takes place and which
are both receivers and senders.

The compiler can optimize the ALW by applying heuristics based on param-
eters issued to the compiler, e.g., the compiler can try to minimize the consumed
bandwidth, minimize number of generated agents, minimize number of gener-
ated messages, maximize parallel execution of activities, and check for deadlock
freeness. In addition to general purpose analysis, the compiler can check specific
properties on the ALW, such as verifying that the shipping procedure of a spe-
cific item begins only after the purchase is completed. Actual prototype of the
compiler implements part of these features.

Phase 2: Mapping the ALW to WEs In the second step, the compiler concretely
generates agents from the ALW specification. To achieve this result, the com-
piler uses the User-level Activity Implementation Database (ULAID) and the
Database of Skeletons (DoS). The ULAID stores the implementation of the
agent-level activities and the DoS stores “empty” implementation of agents (the
skeletons).

A skeleton is a role-specific implementation of an agent that does not con-
tain any behaviour, e.g., a skeleton of a traveller agent can be a lightweight
implementation of an agent limiting bandwidth consumption. Particular system
properties can be obtained by proper choice of skeletons, e.g., limited bandwidth
consumption. The concrete WE is obtained by plugging the specified behaviour
into the skeleton. In particular, the compiler behaves following these steps:

– A complex behavior CB is generated by composing as specified in the ALW
the implementation of each activity contained in the ULAID.

– The compiler analyzes the CB and derives all state variables that will be
necessary to complete its execution.

– A state entity SE is generated by aggregating all state variables
– A proper skeleton is selected from the DoS. The WE is created by plugging

both the complex behaviour CB and state entity SE in the selected skeleton.
– The previous steps are repeated for all WEs that must be created.
– Finally, execution starts.

Actually, we are implementing the WE generation procedure by using an
implementation of the skeletons that dynamically load the compiled complex
behavior and the state variables at start-up by dynamic binding. Instead of gen-
erating compiled WEs, it is possible to use skeletons behaving as interpreters of
ALW specifications. In such case, the WE is obtained by associating the skeleton
to the ALW specification. WEs of the former type are small, i.e., WEs contain
only the code for the execution of the activities, and fast, i.e., instructions can

Hermes: Agent-Based Middleware for Mobile Computing 247

be directly executed; while WEs of the latter type are large, i.e., they imple-
ment a complete interpreter, and slower i.e., instructions must be interpreted,
but they exploit the ability to dynamically modify their behavior at run-time.
The organization of our system enables the use of both type of agents. Actually,
we are implementing the compiler producing compiled agents, but we plan also
to investigate interpretation and dynamic adaptability.

Run-Time Layer

As already described, the overall structure of the system is very complex, it
supports abstract specifications that are mapped into a complex distributed and
coordinated flows of activities over a large-scale distributed system. In order
to master this complexity, and support the transparency of the computing dis-
tribution by using mobile computation, the run time system provides a set of
active services ServiceAgents to allow a secure resources access and a mobile
platform to support the agent mobility. The agent mobility is performed through
mobile code environment that besides mobile code, supports also security, fault-
tolerance, communication, and resource management and discovery.

More in detail, ServiceAgents provide access to services. When a UserAgent
migrates and arrives in a different platform, it can query the Y ellowPageService
to gain information about services offered in the platform and then it commu-
nicates with ServiceAgents to gain the information it needs. This paradigm
simplifies the interactions enabling the use of an agent communication language,
e.g. KQML [23] or Fipa ACL [25], as a unified way to communicate with other
agents, services or resources.

A detail description of the Run-Time Layer components is given in the next
section.

3.2 Hermes Mobile Middleware and Its Engineering

We now describe a practical approach in developing of a modular and reusable
agent-based middleware, in particular the Run-Time support of Hermes software
architecture. We show the flexibility of Hermes middleware and how the followed
component-based approach supports the reusability of existing artefact during
the development of a middleware system for a specific application domain. As
we already highlighted in the previous sections, agent-based systems are com-
plexes [34], the development involving distribution, mobility, communication and
security problems. The adoption of layered software architecture allows to master
this complexity and enhances security because the interactions occurring among
different layers can be monitored and filtered. In order to give flexibility to the
Hermes middleware, we decided to adopt a layers plus components strategy, in
fact each layer is designed as an aggregation of components.

We think that this point of view is a natural and effective approach to middle-
ware construction and, more generally, to the development of complex systems.
In the following paragraphs we give some hints of design of the Hermes kernel
the detailed description can be found in [9]. We have chosen UML as architec-

248 F. Corradini and E. Merelli

Fig. 7. 3-Layered Architecture of Hermes Mobile Computing Platform. The core sup-

ports identification, communication, loading and security; BasicServices supports dis-

covery, mobility, creation, communication and security; Agent supports User agents

and Service agents

ture description language because is widely accepted in both the academic and
industrial worlds as a reference language for system design.

The Hermes kernel can be described by three components, placed in a 3-
layered software architecture as shown in Figure 7. Notice that this software ar-
chitecture is different from that shown in Figure 5 because this last one highlights
the hierarchical dependencies among system software components, for example
the agent component in Figure 5 is unique while in Figure 6 has two distinct
functional roles of UserAgent and ServiceAgent.

The Core layer role is similar to the kernel of an operating system, it im-
plements the basic features of a mobile code platform, such as communication
protocols, code traceability and security. The Core layer is essentially free of any
system strategy.

The BasicServices layer extends the core features by providing services that
directly support the agents activities, e.g., agent mobility and agent communi-
cation implemented on top of inter-platform communication. The BasicServices
layer contains system strategies, but does not implement any feature of the
application domain.

The Agent layer is the container of all service agent and user agents of the
application domain. The BasicServices layer is always present in any place, so
that minimum support to agent execution is guaranteed.

Core Layer. The Core layer is the lowest layer of the architecture (Figure 8)
and contains base functions of the system, such as the implementation of the
inter-platform communication protocols and agent management functions. This
layer is composed of four components: ID, SendReceive, Starter and Security.

To give an idea of how the design phase has been made we describe the
components belonging to the Core Layer.

The ID component implements general identity management functions by
managing a repository containing information about locally generated agents

Hermes: Agent-Based Middleware for Mobile Computing 249

Fig. 8. The Core Layer. It supports identification, communication, loading and security

Fig. 9. ID Component

(Figure 9). This repository is accessed whenever we want to know the current
position of an agent.

The ID component is also responsible for the creation of the identifiers to
be associated to new agents. These identifiers contain information about the
birthplace, date and time of the agent’s creation. Agent localization is simplified
by information contained directly in the “ID”, such as the birth place. In fact,
the birth place of an agent hosts information about the agent’s current location.

A second important feature of the Core is the SendReceive component
(Figure 10). This component implements low level inter-platform communica-
tion by sending and receiving messages and agents. By using the traceability
services offered by the ID component, SendReceive can easily update or retrieve
the exact position of a specific user agent.

It is important to note that every change in the communication protocol is
concealed within the BasicService layer. The SendReceive component can also
send and receive agent instances. This feature is reused by the upper layer to
implement agent migration.

The Starter component processes any request for agent creation. This partic-
ular component, in fact, takes an inactive agent (just created or migrated), and
checks it for the absence of malicious or manipulated code. These agents, before

250 F. Corradini and E. Merelli

Fig. 10. SendReceive Component

Fig. 11. BasicServices Layer

activation, are dynamically linked to all basic services of the platform. During
execution the agent is isolated from the Core layer by the Basic Service layer.

The Security component, as mentioned above, checks for the presence of
malicious code or manipulations within the agent code.

Note that at this abstraction level permissions are not an issue. The code
inspection concerns only dangerous agents that attempt to perform illegal oper-
ations, such as viruses.

The BasicService Layer. BasicServices layer (Figure 11) has five main com-
ponents: Discovery, Mobility, Genesis, Communication and Security Politics.

The Discovery component searches and detects service agents. When a user
agent wants to communicate with a service, it will ask the Discovery for the
right identifier to use as the message’s receiver. The service detection strategy
can be implemented in different ways; for example by a fixed taxonomy or by
an UDDI [6], commonly used in the Web Services application domain.

The Mobility component enables the movement of code across platforms [27],
it implements the interface used by the UserAgent and it accesses to components
of the Core layer to send, receive and load agents. It is important to note that real
communication between different locations can be achieved only through Core’s
SendReceive component, and then migration is independent of the type of used
transport. Mobility consists on copy the agent i.e. its code and its current state

Hermes: Agent-Based Middleware for Mobile Computing 251

and send it to the destination platform where it will be re-started in a specific
point (weak mobility). The local agent is destroyed.

The Communication component makes possible to send and receive agent-
directed messages both in an intra- and inter-platform context. Intra-platform
messages are messages sent between agents and services residing in the same
platform. Inter-platform messages are messages sent to agents residing in dif-
ferent platforms (our system does not allow for remote communication between
user agents and service agents).

The agent requesting the dispatch of a message does not need to know, ef-
fectively, where the target agent is; in fact, the ID is sufficient to post correctly
a message. The Communication component uses one of the Security Policy’s
interfaces to ascertain whether the specific UserAgent or ServiceAgent has the
right privileges for communication, if an Agent is not authorized to use a service,
the message is destroyed.

Before accessing resources and services, an agent must authenticate itself. The
identification is performed by sending a login message to a specific ServiceAgent,
as consequence the SecurityPolitics component jointly with the Communication
component intercept the message and unlock the communication. The Securi-
tyPolitics component centralizes control of permissions, protects services and
resources from the user agents, and provides the administrator with an easy way
to manage all permissions.

The last component of the service layer is the Genesis component that enables
agent creation. A special case of agent creation is cloning that is performed when
it is necessary to create a copy of an existing agent. The two copies differ only
for the agent identifier.

A special case of agent creation is cloning that is performed when it is nec-
essary to create a copy of an existing agent. The two copies differ only for the
agent identifier.

The Agent Layer. The upper layer of the mobile platform, the Agent Layer,
contains all service and user agents. This layer implements features of the agent-
based workflows management system as described in Section 3.1.

This component has not any interface, but is has only several dependencies
upon the BasicService layer. The Agent component contains a general abstract
agent class and two inherited classes. ServiceAgent consists of agents enabling ac-
cess to biological databases or providing algorithm. UserAgent represents agents
created by biologists. User agents execute complex tasks and implement part of
the logic of the application.

The HermesV2 Java implementation, has been completely designed and de-
veloped following this approach [29]. The middleware we have implemented is
separated into several functional units (components) with mutual dependencies
explicitly documented by UML diagrams.

We would like to mention that such an approach, based on layers and com-
ponents, supports the generation of middleware for different domains as shown
in [9].

252 F. Corradini and E. Merelli

3.3 Main Services and Tools for Hermes

In this section we describe some aspects, that have been significant for the im-
plementation of Hermes middleware. The programming environment offered by
Hermes consists of several tools both for design and execution of distributed ap-
plications. Some tools turn into Agent services, e.g. those that support resources
access, resource localization, resource selection, schema mapping, etc. some oth-
ers remain tools usable during workflows design, analysis, verification phases.
Among Service agents we mention:

AIXO: XML Generalized Wrapper

AIXO is a tool developed to present any data source as a collection of XML
documents. AIXO is flexible and modular, it allows to manage many input data
sources ranging from HTML to XML, databases, flat file, CGI and command line
programs. AIXO has been experimentally used on different resources in different
contexts and successfully integrated as wrapper service agent in Hermes [4].

The AIXO architecture is not for a specific resource or data type; rather, it
is general and suitable for a wide range of resources. An AIXO Service agent
implementation offers a wrapper that provides an “XML view of the resource”.
The AIXO architecture, shown in Figure 12, is composed of three main packages:
ResourceAccess, ResourceToXML, XSLTProcessor.

ResourceAccess manages access to the resource to be wrapped. Its imple-
mentation depends upon the communication protocol, permissions, and access
policies. By using the ResourceAccess’s interface, data can be gathered from
the resource in its native format; there is no transformation. For example, in

Fig. 12. AIXO architecture

Hermes: Agent-Based Middleware for Mobile Computing 253

the case of a Relational DataBases (RDB), the data obtained is contained in a
“recordset”.

ResourceToXML transforms data, provided by the ResourceAccess module,
into XML. The transformation is canonical and independent of the data’s se-
mantics. Mapping from the original format to XML is performed considering
only the data’s structure. For example, in transforming a recordset to XML, the
output conforms exactly to the schema of the table; in the case of a flat file,
the transformation will derive its structure taking into account special charac-
ters such as tabular and white spaces. For an HTML text, the transformation
extracts the document schema from the tags.

Finally, the XSLTProcessor applies a set of XSLT filters to the raw XML,
provided by the ResourceToXML, to obtain the effective XML view of the re-
source. In this phase, the semantics of data plays an important role.

To create a concrete wrapper the ResourceAccess and ResourceToXML Java
classes must be implemented and the XSLTProcessor must be configured us-
ing the appropriate set of XSL Transformations. Each wrapper is defined by
an XML configuration file. The system automatically loads classes and initial-
izes attributes. AIXO has been experimentally proven on different resources in
different contexts [4].

AIXO Service agent can interact with OMSE (ontology management Service
agent), below described, to dynamically find the mapping among resources
schemas. An example of AIXO at work is given in Section 4.

WS2A: A Web Service Service Agent

WS2A is a Web Service Service Agent, a tool developed to access Web Services
and to derive at run-time the resources access methods [60]. Briefly a Web Service
is an interface which describes a set of service access methods usable through
the network via XML messages. The interface hide any service implementation
details.

This tool is successfully used during the research and selection process of
a service that a MAS (matchmaker Service agent) supports. WS2A is charac-
terized by a peculiar communication among agents which allow to manipulate
unknown objects at run-time. In particular, data exchanged among agents do
not use messages but objects and by using JAVA reflection technique we support
the manipulation of unknown data.

MSA: Matchmaker Service Agent

Service discovery is the process of localizing resources and services available in
large scale open and distributed systems. In a distributed and redundant system
as the Web, it is necessary, beside localizing services, to filter them in order
to obtain those which are best for the activities for which they have been re-
quested. By the term matchmaker we mean a software entity, a service agent,
which monitors services availability, maintains an updated file of all useful infor-
mation for using services and possibly ensures a quality choice of them. We have
developed a matchmaker and defined a quality model based on parameters that

254 F. Corradini and E. Merelli

Fig. 13. Matchmaker Service Agent. Any gray box represent an agent active in the

distributed environment

ensure the best choice of a service for a specific application domain. The com-
munication protocol among matchmaker and other agents is given in Figure 13.
A full description of the tool is provided in [14]. The quality model consists of
two components, the first describes general quality aspects of the distributed
computational environment where the service is offered, we have considered the
Web, and the other includes quality features of the application domain. Any
resources must fulfil the following requirements:

– Aim: the purpose for which the resource has been developed;
– User target: the list of hypothetical users;
– Reliability: the probability of successfully using a resource;
– Feasibility: the measurement of the easiness to access the resource;
– Usability: the measurement of the easiness to use the resource;
– Originality: the degree of correctness of the resource and its information;
– Privacy: the legal conditions of using the resource;
– Updating: the attendance of the resource updating;
– Uptiming: the maximum length of time between two resource failures;
– Timing: the daily time of resource activity;
– Speedy: the measurement of the execution time;
– Browsing: the measurement of the human easiness to find a resource;
– Popularity: the number of active consumers;

Each quality aspect above defined is quantitative measured on the basis of
several parameters whose description if given in [49, 22]. The domain-dependent
quality aspects is provided in section 4.

Hermes: Agent-Based Middleware for Mobile Computing 255

OMSA: Ontology Management ServiAgent Agent

The availability of automatic tools for quickly determining semantic similarity
among concepts across different ontologies is useful during the processes of data
retrieval and data integration, in Hermes performed by AIXO. We have devel-
oped a tool which supports the ontology management to support the mapping
between domain ontology and local schema used to defines data repositories. To
that purpose we have defined a similarity algorithm to compare two ontologies.
The main idea is, supposing to have, in each execution environment, a shared
global ontology and a local ontology, the algorithm determines similar concepts
(i.e., data types, formats and terms) by computing the number of identical rela-
tionships among two concepts of different ontologies and recursively to all their
derived concepts as well. The algorithm is considered an instrument that any
mobile service agent can use to compare two ontologies, usually the application
domain ontology shared at user level and that derived from the local resources
schema. The detailed description of the similarity algoritm is given in [18] while
an example of how the tool can be used is provided in Section 4.

LightTS-SA: lightTS Service agent

lightTS-SA is a Service agent developed to support a coordination agents via tu-
ple space. lightTS [48] is a Java package which provides a lightweight tuple space
implementation. Light because lighTS does not support the persistence, security
and remote access, features that can be provided by the run-time support. We have
used this service especially to coordinate agents that move in place where they do
not know how to contact local services, but they can interact with lightTS service
agent which comes between the requester and the provider of a service.

WISA: Web Interface Service Agent

WISA is a Service agent realised to support the expert programmer whose
want to directly interact with Hermes at system layer. This Service agent has
been designed to support some operations which characterize a user session:
manage your personal account, create an agent, send an agent, get the output of
the execution. To generalize the interface, the WISA communication protocol,
described in Figure 14, does not allow the “Client” to directly communicate

Fig. 14. WISA: Web Interface Service Agent

256 F. Corradini and E. Merelli

with WISA because the first one uses the HTTP protocol and the second one
uses a protocol based on Socket and XML. To make possible the communication
is needed a third component: a Web Server. The Web Server must support
application server-side (Java Servlet, JSP, ASP, CGI, PHP etc.).

WfSA: Workflow Interface Service Agent

WfSA is a Service agent developed to provide an interface to end user which
designs his workflow by combining the activities chosen from a give list. Note that
the list of activities are those implemented at the system layer of the Hermes
software architecture. The interface configured for a bioinformatics domain is
give in Section 4.

Analysis and Verification Tools for Workflow

A further aspect we have dealt with is the possibility to used an automatic
tool to analyse and verify the behaviour of the workflow that a user can design.
Recalling that, in Hermes, a distributed applications is a workflow of activi-
ties, designed by a graphical notation usually made by JaWE editor. We have
verified that there is a correspondence between the JaWE notation and UML
Activity Diagram [59]. Then we have provided a process algebra view of work-
flows described in terms of UML activity diagrams by defining an interpretation
of activity diagrams into CSP-like process algebra terms. Similar results could
be obtained if we represents the workflow by a Petri Nets. To provide Hermes
with a verification tool based on CSP-process algebra to apply to user work-
flow, we have exploit an intermediate relational language as a bridge between
activity diagrams and process algebra terms as shown in the sequel and detailed
discuss in [1]. The obtained results do not only show a conceptional relationship
between two different notations. The advantage of our comparison is twofold.
On one hand we provide different notations for “the same” system abstrac-
tion: a textual description (process algebras terms) and a graphical notation
(workflows). This can be very useful during the system life cycle. On the other
hand process algebras are associated with formal semantics and this has allowed
the proliferation of automatic tools for system specification and verification so
that our results open the possibility to exploit such tools for the verification of
workflows.

4 Application Scenarios

Scenario 1: Hermes for Bioinformatics

The scenario we refer to is related to a biological domain. In the post-genomic era,
the amount of available information is constantly increasing, and it is difficult to
exploit available data from all sources [26]. As an example we take the context of
Oncology over Internet project [44], that aims to develop a framework to support
searching, retrieving and filtering information from Internet for oncology research
and clinics.

Hermes: Agent-Based Middleware for Mobile Computing 257

Suppose the application domain involves the use of biological resources (micro-
organisms, cell lines, mutations) that are essential for implementing a good,
reproducible experiment. Established that high quality biological resources are
available at some specialized centres (Biological Resources Centers:ATCC,
DSMZ,) and their catalogues are available on-line and that many researchers
assessing molecular biology databases often need find more information regard-
ing resources to finally request materials.

Suppose to have three different domain each of one characterized by a set
of activities as here described: Cell Line domain={A1: Find information about
the cell line named x, A2: Find all cell lines derived from a specific tumour or
pathology, A3: Find all Cell Lines producing a specific protein, A4: Given a
specific Cell Line, find all related bibliographic references A5: Given a specific
Cell Line, find all information about produced proteins}, Mutation={ B1: Find
all mutations observed in a specific intron/exon in subjects with specific sex and
life habits (i.e. smokers/ drinkers), B2: Find all mutations in subjects affected
by a given pathology, B3: Find all subjects affected by a tumoural pathology
and with a given protein mutation, B4: Find all mutations observed by using a
given cell line, B5: Given a specific mutation, find all abstracts of the correlated
bibliographic references} and Bibliographic resources= {C1: Select all abstracts
of bibliographic references, whose text includes a given term}.

As an example consider a workflow defined to verify a mutation experiment
by reproducing it. In particular a workflow that has a goal to retrieve abstracts
from a literature databases for identifying the best cell line for reproducing
a human TP53 mutation experiment linked to a particular tumour-habits-sex
combination. Any single activity of the workflow uses bioinformatics services
available on Internet in order to achieve the desired result. The user will select
activities B1,B3 and B4, will provide parameters to each one: B1. Retrieve all
mutations (IDs) observed in the 7th exon in men who are ex-smokers and drinkers
by searching p53 mutations database SRS implementation at IST, Genova; B4.
Retrieve all mutations (IDs) observed by using B9 cell line as original resource
by searching p53 mutations database SRS implemerntation at IST, Genova; B5.
Retrieve all abstracts of the correlated bibliographic references, of a specific
mutation ID by searching Medline. And will combine them by the workflow
operators as described in Figure 15.

Hermes in the context of O2I project is called Bioagent [62], it supports the
design of user workflow by the interface shown in Figure 17, i.e a Workflow
Service Agent (WfSA). The context-aware compiler will produce the set of mo-
bile user agents whose behaviours are described in Figure 16 and implemented by
a set of activities, called use cases in the Figure 17, and stored in the knowledge
base. The user get the result in XHTML.

The Figure 18 shows a typical interaction between a bioscientist and user
agents involves the following steps:

1. a bioScientist specifies the set of activities to be performed;
2. the compiler system generates a pool of user agents to execute the activities;
3. user agents migrate and clone in order to efficiently accomplish the activities;

258 F. Corradini and E. Merelli

Fig. 15. Example of User Level Workflow in Bioinformatics Domain

Fig. 16. An Example of Agent Level Workflow in Bioinformatics Domain

4. agents query resources by interacting with local service agents. service agent
map the query to local schema by using AIXO which implements the ab-
straction layer so that agents interact only with XML documents. In the case
in which an AIXO service agent has to manage different types of documents

Hermes: Agent-Based Middleware for Mobile Computing 259

Fig. 17. User Interface for Workflow Management in Bioinformatics Domain

(ontologies mismatching) can interact with OMSE and use the ontology sim-
ilarity algorithm previously mentioned.

5. user agents merge results and furnish data to the bioscientists.

260 F. Corradini and E. Merelli

Fig. 18. Interactions Between Agents and AIXO wrappers within Bioagent[62], i.e.

Hermes configured for Biologists

In this example AIXO Service agent is used both to retrieve and to present
resources as XML documents.

To prove the flexibility of Hermes middleware we now briefly describe a case
study we have recently made [17] by using Hermes for systems biology [36], i.e.
bioinformatics area which aim to understand how biological systems function.
A cell consists of a large number of components interacting in a dynamic envi-
ronment. The complexity of interaction among cell components and functions
makes design of cell simulations a challenging task for biologists. We have used an
agent-oriented methodology to design a cell components as autonomous software
entities (agents) situated in an environment and communicating via high-level
languages and protocols (ontologies), may be a natural approach for such models.
We constructed a model of cellular components involved in the metabolic path-
way of carbohydrate oxidation. To give an idea of approach, the Figure 19 shows
the set of agents identified be autonomous part of the system while Figure 20
shows the behavior of the only one component. Note that the UML Activity

Hermes: Agent-Based Middleware for Mobile Computing 261

Fig. 19. The Cellular Agents Identification Diagram

Fig. 20. An example of agent workflow, the Mitochondrial Matrix Activity Diagram

262 F. Corradini and E. Merelli

Diagram described a workflow of activity which in turn is executed by a pool of
mobile agents which represents small components of the cell.

Scenario 2: Hermes for Industrial Control

Now, we focus on the industrial control case study, in particular the domain of
quality control. In a supply chain, the actors are the suppliers and the production
plans; the former usually provide both raw and semi-manufactured materials
while the latter assemble the various input components to produce a final, more
complex assembled product. We are interested to develop an application for
the traceability of the different components and semi-manufactured products in
terms of quality.

At first sight this context, geared towards quality, reflects problems with the
integration of heterogeneous data. In fact, each single supplier uses his own qual-
ity control mechanisms and stores results of test in his own format. The goal is
to integrate and rendered readily accessible all these data among manufacturers.
It would be useful, once a defect or malfunction in the final product has been
identified, to be able to trace and recover all information regarding quality that
has been generated by the different tests and controls on components composing
the faulty product.

An agent-based system can be the technology exploiting resources and ser-
vices integration in the manufacturing applicative domain, but several issues
must be taken into account. Embedded systems that perform the various qual-
ity tests of the products are very heterogeneous, and data is stored in repository
providing access services that differ significantly. The security issues, moreover,
play a vital role all along the supply chain. In fact, both generated reports and
embedded checking system must be protecting from malicious access.

The supply chain consists of federated enterprises: many suppliers, a produc-
tion plant, a distribution center and a technical service center. Each enterprise is
characterized by a specific role and carries out a set specific tasks in the virtual
organization.

The complete set of tasks includes quality testing, performance testing, re-
porting on damages incurred during shipment, and reports on repairs carried
out directly to the customer.

Suppose that the Production plant receives a communication of the nth fault
of a washing machines family. The responsible of the plant could decide to an-
alyze the complete life-cycle testing quality data of the signaled washing ma-
chines family.

To that purpose he must identify any suppliers involved in the production
of the washing machine and retrieve from them all distributed data regarding
testing quality data.

Figure 21 shows a possible quality-oriented workflow which describes the
human aim. The workflow consists of domain specific activities regarding any
retrieval phases.

The quality-oriented workflow can be mapped into an agent-oriented work-
flows (Figure 22) and then compiled into a pool of agents (agent society) spe-

Hermes: Agent-Based Middleware for Mobile Computing 263

Fig. 21. Quality-oriented Workflow for the Functional Testing in the Production Con-

trol Plant

Fig. 22. Agent-oriented Workflow

264 F. Corradini and E. Merelli

cialized to execute one or more activities. Among those we find Manager Agents,
Test Agent and Fragmenter Agents. Those agents, once created, have the main
features to be completely autonomous and running all the time for its goal.

Manager Agents has the goal to create the final testing report by interacting
with Test Agents and Fragmenter Agents. The final testing report, created by
an XML template, will include all quality data of the washing machine, testing
reports of any single components and all defects recorded during the product’s
life-cycle. Test Agent has the goal to retrieve quality data for a single compo-
nent by communicating with remote Wrapper Service Agents (running on remote
site). Fragmenter Agents has the goal to decompose a complex domestic device
(washing machine) into a list of semi-manufactured products and raw materi-
als (components).

Scenario 3: Hermes for Pervasive Computing

The pervasive and ubiquitous devices are computational and control systems,
located in domestic environment (domotica) and in a manufactured articles.
These devices are often either masked or invisible therefore they can assist us in
the shadow. In this scenario, the microcontroller is the computational system for
excellence. A microcontroller is a computer system that centralizes, in a single
chip, all the functionalities needed to control and manage electrical domestic
appliances and automotive systems. One of the interesting characteristics of
the microcontrollers is low cost that favours a quick and wide spread among
many manufactured articles that surround us. A problem is the huge variety of
microcontrollers offered by producers to satisfy the demand.

A great number of microcontrollers use devices like bluetooth [7], echelon
[20], WLan [61], IrDA [58] that allow interactions between devices. Many en-
terprises provide protocols and services to allow connection between computers
and devices, like SUN with Jini [35]. However, these solutions do not conciliate
the computational resources of the microcontrollers with protocols flexibility, the
cost and the variety of the microcontrollers.

In this scenario, we have defined a virtual machine that makes transpar-
ent the differences among microcontrollers and supports connectivity without
defining new protocols and to realize a secure environment for pervasive and
ubiquitous computing.

To support a secure communication, and keep track of a mobile agent, we
have chosen a hierarchical structure: each agent may know only the ID of its
father agent (its creator) and its children agents

Clonation, mobility and communication have been identified as the kernel
primitives in the microcontroller environment. Clonation allows to duplicate the
code and the state of a running code. After a clonation there will be two iden-
tificable codes in execution. Mobility allows a code to move on other execution
platform in proactive mode: a copy of the code and its current state is moved to
the destination platform for being started from a specific point (weak mobility).
Unlike the clonation, the code that performs the move primitive comes destroyed
if the execution of the movement primitive succeeded. Communication directly

Hermes: Agent-Based Middleware for Mobile Computing 265

results from the clonation primitive. After a clone operation will be created an
exclusive communication channel between cloning and cloned codes. Commu-
nication (through exchange of messages) is possible only between cloning and
cloned. Messages are sent-received in asynchronous-synchronous fashion.

The virtual machine relies on a calculus which describes the semantics of the
minimal set of operation isolated to characterize a platform supporting mobile
code [13]. The calculus for modelling mobile applications is summarized here
below.

A is a set of basic actions, Aτ = A ∪ {τ}, where τ is used to represent
internal activity. Nid and Np are an infinite sets of names of mobile processes
and platforms,resp. M is an infinite set of messages.

Definition 1. (mobile processes)
The set S of sequential programs and the set M of mobile processes (sequen-

tial programs in execution) are generated by the following grammar:

S ::= nil
∣∣ α.S

∣∣ clone(S).S
∣∣ send(m).S

∣∣ receive(m).S∣∣ go(p, S)

where α ∈ Aτ , m ∈ M and p ∈ Np. The set M of mobile processes (codes in
execution) is generated by the following grammar:

M ::= NIL
∣∣ init(S, SP)

∣∣ id : {SP, S, A} ∣∣ M1, M2

where id ∈ Nid, S ∈ S, SP ∈ P(M) and A ∈ P(Nid), nil represents a terminated
sequential program.

A process whose sequential behaviour is α.S, send(m).S, receive(m).S and
clone(Sc).S can execute α, send and receive a message in m ∈ M, clone itself
and then behaves as S. go(p, S) instructs a process to migrate to a destination
platform named p and then behaves as S.

The component-based approach, used to developed Hermes and discussed in
Section 3.2, allows to create new components in the Hermes core, by reusing the
existing ones. We have developed a version of Hermes which adapt its compo-
nents to the hardware characteristics of the microcontrollers to guarantee the
function required by middleware. As an example, the communication component
can be adapted for various technologies [7, 20, 35].

We have configured the Hermes platform for running with CDC of SUN
[55] on PDAs. The porting of the Hermes on one particularly compact JVM
for microcontrollers (like CLCD of SUN of type KVM [56, 53]), according to
[53] needs libraries for sockets, serialization and reflection. Unlike many other
platforms, Hermes does not use RMI [35]. The only pre-requirement on the
microcontroller is the presence of a JVM. The core of the platform plus AIXO
service is between 120KB to 160KB. Therefore the implementation of HermesV2
over a microcontroller would supports the following functionalities:

Communications peer to peer. At most two platforms are involved in every com-
munication. Therefore it is possible to realize it without involving other partners

266 F. Corradini and E. Merelli

[12]. Every platform must only store information in order to realize communica-
tion between clonated and cloning codes currently in execution on it. This implies
limited traffic of service between platforms and small tables. Substantially are
draft communications to local environment.

Communications deadlock free. The communications of this model are deadlock
free. According to the hierarchical structure of communication, it is impossible
to establish the condition of circular wait for more that two actors. Moreover, the
situation of circular wait happens only if both the actors, cloning and clonated,
establish a synchronized communication. Such a situation can be easily prevented
imposing that, before sending a synchronous message m, a code must control
that in its own queue there is not a synchronous message sent by the receiver of
the massage m. In this case the communication simply fails with exception.

Absence of timeout. Since the actor of a communication are always two codes,
cloning and clonated, that may also reside on two different platforms, it is possi-
ble to determine the cause of failures in the communications. Consequently the
code that sends or receives a communication can know the exact cause of the
failure and always undertake appropriate operations. This is not always the case
in systems where the communications is based on timeouts.

Absence of communication protocols. The communications between cloning and
clonated and vice versa is not subject to protocols (ACL [24]) since the code of
cloning is the same of clonated.

Security. All the requests of a code in a clonation tree (or forest of clonation trees)
realize a closed system and a set of predetermined communications. The identifier
produced after a clonation is only known by the cloning and it is the only handle
in order to allow communication between cloning and clonated. Beyond to the
communications towards the services, other shape of communication for the user
code does not exist. The control of the communications allows to remove or to
supply grant to the codes in execution. By removing all the communications a
code becomes completely innocuous.

Correctness. Since a pool of instance relative to a code is ties at the communica-
tion network, it’s possible to simulate dynamic behaviour in static background.
It would be enough to eliminate from the code the primitive of mobility in order
to verify the behaviour gearless of context. Moreover since the communications
happen between copies of the same code is possible to verify the correctness
analyzing the graph of the possible states that it can assume a code in execu-
tion [46].

5 Conclusion and Future Perspective

Mobile computing systems are computational systems that may be easily moved
and whose computing capabilities may be used while they are moved. Several
middleware have been proposed for mobile computing [47, 45] most of them

Hermes: Agent-Based Middleware for Mobile Computing 267

focus on communication and coordination of distributed components. Indeed, we
concentrate on a user not expert programmer, on workflow as suitable technology
to hide distribution and on mobile agent as flexible implementation strategy of
workflow in a distributed environment.

Our experience in developing applications in several application domains,
convinces us on the necessity to create an integrated, flexible programming en-
vironment, whose user can easily configure for its domain. This leads to the
developing of Hermes middleware. Hermes is structured as a component-based,
agent-oriented, 3-layered software architecture. It can configured for specific ap-
plication domains by adding domain-specific component libraries. The user can
specify, modify and execute his workflow in a very lightweight.

Workflow is specified abstractly in a graphical notation and mapped to a set
of autonomous computational units (UserAgents) interacting through a com-
munication medium. The mapping is achieved by compiler that is aware not only
of contents of a library of implemented user activities but also the software and
hardware environment to executing them. In our case it includes also available
services (ServiceAgent). A user specifying workflow need not to be concerned
with where to search for information, in what form information is stored, the
protocol for interacting with each services or the low level details that can be
left to the context-aware compiler.

We are moving to the definition of a domain-specific mobile agent language
to support as target language of the workflow compilation. We also plan to
study the integration of Hermes with Klaim to allow the formal verification of
agent-oriented workflow. Finally, we aim to experiment the use of the abstract
machines for systems biology as one of the domain-specific language.

Acknowledgements

We wish to thank all the students have been involved, ver the last years, in the de-
velopment of Hermes, among them we would like to mention Francesca, Davide,
Lorenzo, Ezio, Leonardo, Marco, Chiara and Barbara. A special acknowledge is
due to Rosario Culmone, Leonardo Mariani and Diego Bonura with who we have
taken the most important development decisions.

We would like to thank Michal Young for valuable comments on a preliminary
version of this paper.

References

[1] R. Amici, D. Cacciagrano, F. Corradini, and E. Merelli. A process algebra view of
coordination models with a case study in computational biology. In Proceedings
of 1st International Workshop on Coordination and Petri Nets, PNC’04, 2004.

[2] M. Angeletti, R. Culmone, and E. Merelli. An intelligent agent architecture for
dna-microarray data integration. In NETTAB Workshop on CORBA and XML:
Towards a bioinformatics integrated network environment, Genova, 2001.

[3] R. B ’ Far. Mobile Computing Principles. Cambridge University Press, 2005.

268 F. Corradini and E. Merelli

[4] E. Bartocci, L. Mariani, and E. Merelli. An XML view of the “world”. In In-
ternational Conference on Enterprise Information Systems, ICEIS, pages 19–27,
Angers, France, April 2003.

[5] E. Bartocci, S. Moeller, L. Todo, and E. Merelli. Integration of ensembl with
bioagent. In Abstract book of the Biocomp - Gruppo di Cooperazione in Bioinfor-
matica, 2004.

[6] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. UDDI version
3.0. Published specification, Oasis, 2002.

[7] Bluetooth. http://www.bluetooth.org.
[8] D. Bonura, F. Corradini, E. Merelli, and G. Romiti. Farmas: a MAS for extended

quality workflow. In 2nd IEEE International Workshop on Theory and Practice
of Open Computational Systems. IEEE Computer Society Press, 2004.

[9] D. Bonura, L. Mariani, and E. Merelli. Designing modular agent systems. In
Proceedings of NET.Object DAYS, Erfurt, pages 245–263, September 2003.

[10] L. Cardelli. Abstract machines of systems biology. In Transaction on Com-
putation System Biology, special issue for NETTAB Workshop on Model and
Metaphors from Biology to Bioinformatics Tools, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2005. to appear.

[11] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):117–213, 2000.

[12] N. Carriero, D. Gelernter, and T. G. Mattson. Linda in heterogeneous computing
environments. In Proceedings of the Workshop on Heterogeneous Processing, pages
43–46, Beverly Hills, CA, March 1992.

[13] F. Corradini, R. Culmone, and M. R. Di Berardini. Code mobility for pervasive
computing. In 2nd IEEE International Workshop on Theory and Practice of Open
Computational Systems. IEEE Computer Society Press, 2004.

[14] F. Corradini, C. Ercoli, E. Merelli, and B. Re. An agent-based matchmaker. In
proceedings of WOA 2004 dagli Oggetti agli Agenti - Sistemi Complessi e Agenti
Razionali, 2004.

[15] F. Corradini, L. Mariani, and E. Merelli. A programming environment for global
activity-based applications. In proceedings of WOA 2003 dagli Oggetti agli Agenti
- Sistemi Intelligenti e Computazione Pervasiva, 2003.

[16] F. Corradini, L. Mariani, and E. Merelli. An agent-based approach to tool inte-
gration. Journal of Software Tools Technology Transfer, 6(3):231’244, November
2004.

[17] F. Corradini, E. Merelli, and M. Vita. A multi-agent system for modelling the
oxidation of carbohydrate cellular process. In First International Workshop On
Modelling Complex Systems (MCS 2005), Lecture Notes in Computer Science.
Springer Verlag, 2005. To appear.

[18] R. Culmone and E. Merelli. An semantic comparison of ontologies. Technical
Report TR02, Dipartimento di matematica e Informatica, Universit di Camerino,
2003.

[19] R. De Nicola, G. L. Ferrari, and R. Pugliese. Klaim: A kernel language for agents
interaction and mobility. IEEE Transaction of Software Engineering, 24(5):315–
330, May 1998.

[20] Echelon. http://www.echelon.com.
[21] Enhydra. Jawe. http://jawe.enhydra.org/, 2003.
[22] C. Ercoli. Un modello di qualità per la scelta di servizi web in ambito biologico

- il middleware. Master’s thesis, Laurea in Informatica, Università di Camerino,
a.a. 2003-2004. http://dmi.unicam.it/merelli/tesicl26/ercoli.pdf.

Hermes: Agent-Based Middleware for Mobile Computing 269

[23] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Commu-
nication Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings
of the 3rd International Conference on Information and Knowledge Management
(CIKM’94), pages 456–463, Gaithersburg, MD, USA, 1994. ACM Press.

[24] FIPA. The foundations for intelligent physical agent. http://www.fipa.org.
[25] FIPA-ACL. FIPA97 specification, part 2: Agent communication language. Spec-

ification, FIPA, October 1997.
[26] D. Frishman, K. Heumann, A. Lesk, and H.-W. Mewes. Comprehensive, com-

prehensible, distributed and intelligent databases: current status. Bioinformatics,
14(7):551–561, 1998.

[27] A. Fuggetta, G. Picco, and G. Vigna. Understanding code mobility. IEEE Trans-
action of Software Engineering, 24(5):352–361, May 1998.

[28] D. Gelenter. Generatve communicationin linda. ACM Computing Survey, 7(1):80–
112, 1985.

[29] HermesV2. http://hermes.cs.unicam.it.
[30] D. Hollingsworth. The Workflow Reference Model, January 1995.
[31] IBM. TSpace web page. http://www.almaden.ibm.com/cs/TSpace.
[32] Javapace. The javaspace specification web page.

http://www.sun.com/jini/spec/js-spec.html.
[33] J. Jayashankar M. Swaminathan, S. Smith, and N. Sadeh. Modeling supply chain

dynamics: A multiagent approach. Decision Sciences, 29(3), 1998.
[34] N. R. Jennings. An agent-based approach for building complex software systems.

Communications of the ACM, 44(4):35–41, April 2001.
[35] JINI. Jini network technology. http://wwws.sun.com/software/jini.
[36] H. Kitano. Foundations of Systems Biology. MIT Press, 2002.
[37] A. C. R. Martin. Can we integrate bioinformatics data on the internet? Trends

in Biotechnology, (19):327–328, 2001. (Meeting Report).
[38] C. Mascolo, L. Capra, and W. Emmerich. Middleware for mobile computing (a

survey). In E. Gregori, G. Anastasi, and S. Basagni, editors, Neworking 2002
Tutorial Papers, volume 2497 of Lecture Notes in Computer Science, pages 20–58.
Springer-Verlag, 2002.

[39] E. Merelli, R. Culmone, and L. Mariani. Bioagent: a mobile agent system for
bioscientists. In NETTAB Workshop on Agents nd Bioinformtics, Bologna, July
2002.

[40] E. Merelli, P. Romano, and L. Scortichini. A workflow service for biomedical
application. In Abstract book of the Biocomp - Gruppo di Cooperazione in Bioin-
formatica, 2003.

[41] M. Merz, B. Lieberman, and W. Lamersdorf. Using mobile agent to support inter-
organizational workflow management. Applied Artificial Intelligence, 11(6):551–
572, 1997.

[42] J. P. Milner, R. and D. Walker. A calculus of mobile processes, part 1-2. Infor-
mation and Computation, 100(1):1–77, 1992.

[43] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A middleware for physical and
logical mobility. In F. Golshani, P. Dasgupta, and W. Zhao, editors, Proceedings
of the 21st International Conference on Distributed Computing Systems. ACM
Publisher, 2001.

[44] O2I. Oncology over internet, strategic project founded by italian nationa research
minestry. http://www.o2i.org.

[45] A. Omicini and F. Zambonelli. Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999. Special
Issue: Coordination Mechanisms for Web Agents.

270 F. Corradini and E. Merelli

[46] M. Pezzé, R. N. Taylor, and M. Young. Graph models for reachability analysis of
concurrent programs. ACM Transaction on Software Engineeringn and Method-
ology (TOSEN), 4(2):171–213, 1995.

[47] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda meets mobility. In Pro-
ceedings of the 21st International Conferece on Software Engineering (ICSE’99),
pages 368–367, May 1999.

[48] G. P. Picco, A. L. Murphy, and G.-C. Roman. Developing mobile computing ap-
plications with lime. In International Conference on Software Engineering archive
Proceedings of the 22nd international conference on Software engineering, pages
766–769, 2000.

[49] B. Re. Un modello di qualità per la scelta di servizi web in ambito biologico - il
modello di coordinazione. Master’s thesis, Laurea in Informatica, Università di
Camerino, a.a. 2003-2004. http://dmi.unicam.it/merelli/tesicl26/re.pdf.

[50] R. D. Robert D. Stevens, A. J. Robinson, and C. A. Goble. mygrid: personalised
bioinformatics on the information grid bioinformatics. Bioinformatics, (19):302 –
304, July.

[51] G.-C. Roman, G. P. Picco, and A. L.Murphy. Software engineering for mobility:
A roadmap. In The Future of Software Engineering, pages 241–258. 2000.

[52] S. S. Mueller-Wilken, F. Wienberg, and W. Lamersdorf. On integrating mobile
devices into a workflow management scenario. In I. C. Society, editor, Proc. 11th
International Workshop on Database and Expert Systems Applications (DEXA),
pages 186–192, Hamburg, 2000.

[53] C. H. Stephan Gatzka, Th. Geithner. The kertasarie vm. In NET.Object DAYS
2003, pages 285–299, Erfurt, September 22-25 2003.

[54] R. Steven, C. Goble, P. Kaker, and A. Brass. A classification of tasks in bioinfor-
matics. Bioinformatics, 17(2), 2001.

[55] Sun Microsystems. The CVM. http://java.sun.com/CDC.
[56] Sun Microsystems. The KVM. http://java.sun.com/clcd.
[57] A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.

Printice Hall, 2002.
[58] TIDA. The infrared data association. http://www.irda.org.
[59] UML Revision Taskforce. OMG UML Specification v. 1.4. Object Magemement

Group, 2001.
[60] L. Vito. Hermesv2 e web services. Master’s thesis, Laurea in Informatica, Uni-

versità di Camerino, Italy, a.a. 2003-2004. http://dmi.unicam.it/merelli/tesicl26/
vito.pdf.

[61] WLAN. The working group for wlan standards. http://grouper.ieee.org/groups/
802/11/.

[62] The BioAgent project. http://www.bioagent.net/.

Author Index

Acquaviva, Andrea 155, 190, 215
Aldini, Alessandro 155

Bernardo, Marco 155
Bettini, Lorenzo 29
Bogliolo, Alessandro 155, 215
Bontà, Edoardo 155, 190

Chen, Jiwei 69
Chen, Ling-Jyh 69
Corradini, Flavio 234

Das, Shirshanka 69
De Nicola, Rocco 29

Gerla, Mario 69
Grassi, Vincenzo 107

Lattanzi, Emanuele 155, 190, 215
Lee, Yeng-Zhong 69

Merelli, Emanuela 234
Montanari, Ugo 1

Pistore, Marco 1

Yang, Guang 69

Zhou, Biao 69

	Frontmatter
	Models and Languages
	History-Dependent Automata: An Introduction
	Mobile Distributed Programming in {\sc X-Klaim}

	Scalability and Performance
	Dealing with Node Mobility in Ad Hoc Wireless Network
	Performance Analysis of Mobile Systems

	Dynamic Power Management
	A Methodology Based on Formal Methods for Predicting the Impact of Dynamic Power Management
	Dynamic Power Management Strategies Within the IEEE 802.11 Standard

	Middleware Support
	Network Swapping
	Hermes: Agent-Based Middleware for Mobile Computing

	Backmatter

